
Digi XBee Mobile
SDK

User Guide



Revision history—90002361

Revision Date Description

A August 2019 Initial release.

B January 2020 Clarified BLE communication.

Trademarks and copyright
Digi, Digi International, and the Digi logo are trademarks or registered trademarks in the United
States and other countries worldwide. All other trademarks mentioned in this document are the
property of their respective owners.
© 2020 Digi International Inc. All rights reserved.

Disclaimers
Information in this document is subject to change without notice and does not represent a
commitment on the part of Digi International. Digi provides this document “as is,” without warranty of
any kind, expressed or implied, including, but not limited to, the implied warranties of fitness or
merchantability for a particular purpose. Digi may make improvements and/or changes in this manual
or in the product(s) and/or the program(s) described in this manual at any time.

Warranty
To view product warranty information, go to the following website:

www.digi.com/howtobuy/terms

Customer support
Gather support information: Before contacting Digi technical support for help, gather the following
information:
   Product name andmodel
   Product serial number (s)
   Firmware version
   Operating system/browser (if applicable)
   Logs (from time of reported issue)
   Trace (if possible)
   Description of issue
   Steps to reproduce
Contact Digi technical support: Digi offers multiple technical support plans and service packages.
Contact us at +1 952.912.3444 or visit us at www.digi.com/support.

Feedback
To provide feedback on this document, email your comments to

Digi XBee Mobile SDK User Guide 2

http://www.digi.com/howtobuy/terms
http://www.digi.com/support


techcomm@digi.com

Include the document title and part number (Digi XBee Mobile SDK User Guide, 90002361 B) in the
subject line of your email.

Digi XBee Mobile SDK User Guide 3

mailto:techcomm@digi.com


Contents

Digi XBee Mobile SDK User Guide

Bluetooth Low Energy in the XBee devices
Enable and configure the BLE interface 7
Open a secure connection with the XBee device 7

BLE authentication using the XBee Mobile SDK 7
Communicate with the XBee device 8

Configure the XBee device 8
Exchange data with other XBee interfaces 8

Use cases
Configure the XBee device 11

Example 11
Other resources 11

Communicate with a MicroPython application 12
Example 12

Communicate with an external micro-controller 13
Example 14

Create an XBee Mobile application
Cross-platform applications 16

Create an application from scratch 16
Import a sample application 16

Android native applications 16
Create an application from scratch 16
Import a sample application 17

Digi XBee Mobile SDK User Guide 4



Digi XBee Mobile SDK User Guide

The Digi XBee 3 family brings a new Bluetooth Low Energy (BLE) communication interface that
extends the functionality offered by these devices. It allows you to connect an XBee device with a
mobile phone application through a Bluetooth interface and perform different tasks wirelessly:

n Configure the different firmware settings during provisioning operations using a mobile
application.

n Exchange data between a mobile application and the MicroPython application running inside
the XBee to get and send data to peripherals or perform advanced configuration tasks.

n Exchange data between a mobile application and the micro-controller connected to the serial
interface of the XBee device to get and send data to peripherals or even update the firmware
of the micro-controller.

Digi has developed the Digi XBee Mobile app that uses the Bluetooth interface to configure different
firmware settings of an XBee device and communicate with other interfaces wirelessly. The
application is useful during the development process of an XBee solution or for testing purposes, but
you may want to develop your ownmobile applications to perform more specific tasks or
configurations. Developing these mobile applications may become difficult because communicating
with the Bluetooth interface of the XBee device involves some authentication and encryption steps.
For that reason Digi has created the XBee Mobile SDK.
The XBee Mobile SDK is a set of libraries, examples and documentation that help you developmobile
applications to interact with XBee devices through their BLE interface. For this purpose, Digi provides
two easy-to-use libraries that allow you to create XBee mobile native apps:

n XBee Library for Xamarin, to develop cross-platform mobile applications using C# language (iOS
and Android).

n XBee Library for Android, to develop Android applications using Java.

These libraries provide a set of APIs that handle all the authentication, encryption and communication
processes with the Bluetooth interface of the XBee device. They speed up the development of custom
XBee BLE apps with simple examples for different communication models.

n Bluetooth Low Energy in the XBee devices
n Use cases
n Create an XBee Mobile application

Digi XBee Mobile SDK User Guide 5

https://www.digi.com/resources/documentation/digidocs/90002323/
https://github.com/digidotcom/xbee-csharp
https://github.com/digidotcom/xbee-android


Bluetooth Low Energy in the XBee devices

Bluetooth® Low Energy (BLE) is an RF protocol that enables you to connect an XBee device to another
device. The latest Digi XBee products include a dual-mode radio that allows the device to
communicate through the BLE interface and the RF/Cellular network at the same time.
The libraries included in the XBee Mobile SDK provide all the abstractions andmethods required to
create mobile applications that communicate with XBee devices over BLE in an easy way.
The XBee is the server and allows client devices, such as a cellphone, to configure the XBee or data
transfer with the User Data Relay frame. The XBee cannot communicate with another XBee over BLE,
as the XBee is strictly a BLE server. The possibilities are:

n XBee 3: can communicate with mobile devices over BLE
n XBee 3: can communicate with third party devices such as the Nordic nRF and SiLabs BGM over

BLE
n XBee 3: cannot communicate with another XBee 3 over BLE

Enable and configure the BLE interface 7
Open a secure connection with the XBee device 7
Communicate with the XBee device 8

Digi XBee Mobile SDK User Guide 6



Bluetooth Low Energy in the XBee devices Enable and configure the BLE interface

Digi XBee Mobile SDK User Guide 7

Enable and configure the BLE interface
On the XBee device, the BLE protocol is disabled by default, so the first thing to do if you want to work
with the BLE interface is to enable it and configure the authentication password. Follow these steps
to do so:

1. Launch XCTU.
2. Add your XBee device to the list of radio modules.
3. Switch to Configuration working mode.
4. Locate the Bluetooth Options settings group and configure the BT Bluetooth Enable option

to Enabled [1].
5. Click the Write settings button from the toolbar.

a. If the Bluetooth authentication is not set dialog appears, click the Configure button on
that dialog. The Configure Bluetooth Authentication dialog appears.

b. If the Bluetooth authentication is not set dialog does not appear, click the Configure
button of the Bluetooth Authentication setting within the Bluetooth Options settings
group. The Configure Bluetooth Authentication dialog appears.

6. Enter the authentication password you want to use to authenticate with the XBee module in
the Password field.

7. Click OK to save the authentication configuration of the XBee module.

Once the BLE interface is enabled, the XBee device starts a GATT service with two characteristics to
communicate with it via BLE. The libraries included with the XBee Mobile SDK contain a set of methods
that abstract the internals of the BLE communication, so you do not need to worry about writing or
reading from characteristics.

Note For more information about the services and characteristics exposed by the GATT server, see
the XBee API BLE Service page of your XBee device's documentation.

Now you are ready to start communicating securely with the XBee device.

Open a secure connection with the XBee device
Aside from enabling the BLE interface, it is mandatory to authenticate and unlock communication with
the XBee device. This authentication process between a mobile application and the XBee device over
BLE is an implementation of the Secure Remote Password (SRP) algorithm. Once the authentication is
completed, all communication between the mobile device and XBee device is encrypted following the
AES-256-CTR specification.

Note For more information about the SRP authentication process, see the BLE Unlock API page of
your XBee device's documentation.

BLE authentication using the XBee Mobile SDK
The libraries included with the XBee Mobile SDK make the authentication and encryption processes
transparent. You only need to provide the BLE authentication password configured in the XBee device
when instantiating an XBee device class. After opening the connection with the XBee device, the
libraries execute the entire authentication process in the background and encrypt/decrypt the data
when communicating with the device.

https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm
https://www.digi.com/resources/documentation/Digidocs/90002258/#Reference/r_BLE_behavior_services_xbee_api_BLE.htm
https://www.digi.com/resources/documentation/Digidocs/90002258/#Reference/r_frame_0x2C.htm


Bluetooth Low Energy in the XBee devices Communicate with the XBee device

Digi XBee Mobile SDK User Guide 8

Communicate with the XBee device
The libraries provided by the XBee Mobile SDK include methods to configure and communicate directly
with the XBee device via Bluetooth. You do not need to write or read from the characteristics exposed
by the XBee API GATT service, the methods provided by the libraries do these tasks underneath.
Once you open the connection and have authenticated with the XBee device you can:

n Configure the XBee device
n Exchange data with other XBee interfaces

Configure the XBee device
One of the features available through the BLE interface is configuring the XBee device. The following
methods provided by the XBee Mobile SDK libraries set and get any firmware parameter:

XBee Library for Xamarin
Set a parameter:

XBeeBLEDevice.SetParameter(string, byte[])

Read a parameter:

XBeeBLEDevice.GetParameter(string)

XBee Library for Android
Set a parameter:

XBeeBLEDevice.setParameter(String, byte[])

Read a parameter:

XBeeBLEDevice.getParameter(String)

Exchange data with other XBee interfaces
The Bluetooth communication interface allows you to receive and send data to other interfaces of the
XBee device such as the MicroPython and serial interfaces. It is not possible to communicate with
other XBee devices of the network via Bluetooth.
The methods provided by the XBee Mobile SDK libraries to send and receive data from an XBee device
via BLE follow:

XBee library for Xamarin
Communicate with the MicroPython interface
Send data:

XBeeBLEDevice.SendMicroPythonData(byte[])

Receive data:

XBeeBLEDevice.MicroPythonDataReceived +=
EventHandler<MicroPythonDataReceivedEventArgs>

Communicate with the serial interface



Bluetooth Low Energy in the XBee devices Communicate with the XBee device

Digi XBee Mobile SDK User Guide 9

Send data:

XBeeBLEDevice.SendSerialData(byte[])

Receive data:

XBeeBLEDevice.SerialDataReceived += EventHandler<SerialDataReceivedEventArgs>

XBee library for Android
Communicate with the MicroPython interface
Send data:

XBeeBLEDevice.sendMicroPythonData(byte[])

Receive data:

XBeeBLEDevice.addMicroPythonDataListener(IMicroPythonDataReceiveListener)

Communicate with the serial interface
Send data:

XBeeBLEDevice.sendSerialData(byte[])

Receive data:

XBeeBLEDevice.addSerialDataListener(ISerialDataReceiveListener)

For more information about reading and sending data to the XBee device via BLE, refer to the
corresponding library's user guide:

n XBee Library for Android user guide
n XBee library for Xamarin user guide

https://www.digi.com/resources/documentation/digidocs/90001438/Default.htm#tasks/t_communicate_interfaces.htm
http://www.digi.com/resources/documentation/Digidocs/90002359/#reference/r_communicate.htm


Use cases

The BLE interface of XBee devices is useful to configure the device, send data to the integrated
MicroPython interpreter or even forward data to the serial interface. In all cases, a mobile application
is needed to communicate with the XBee device over BLE.
Depending on the requirements of your implementation, you will use one of the following cases when
communicating with an XBee device through the BLE interface:

Configure the XBee device 11
Communicate with a MicroPython application 12
Communicate with an external micro-controller 13

Digi XBee Mobile SDK User Guide 10



Use cases Configure the XBee device

Digi XBee Mobile SDK User Guide 11

Configure the XBee device
One of the purposes of the XBee's BLE interface is to configure the firmware settings of the XBee
device from a mobile application.

In this case, the data you send and read from the XBee device is a set of AT configuration parameters.
It is useful if you want to check and update the configuration of an XBee device that is already
deployed where it is not feasible to establish a connection with it through the serial interface.
Some of the scenarios you may want to configure the XBee device via BLE are:

n Perform a device provisioning operation (initial configuration) of XBee devices during the
deployment process of a network. This includes XBee firmware parameters such as the Node
Identifier (NI), Network ID (ID) or Bluetooth password.

n Read diagnostic parameters from XBee devices already deployed in a network.
n Re-configure or update the value of specific parameters in XBee devices already deployed in a

network.

Example
The XBee Mobile SDK provides an example that demonstrates this use case. The example shows you
how to configure some basic parameters of the XBee firmware from the mobile application. Because
there is not an application running inside the XBee device (MicroPython app) or in an external micro-
controller, the example only covers the mobile phone side:

Mobile phone side

XBee BLE Configuration Sample - Xamarin

XBee BLE Configuration Sample - Android

Other resources
In addition, for this use case Digi provides a mobile application called Digi XBee App that allows you to
configure XBee devices over BLE. You can find it in both iOS and Android markets:

https://github.com/digidotcom/xbee-csharp/tree/master/examples/xamarin/BleConfigurationSample
https://github.com/digidotcom/xbee-android/tree/master/examples/ble_configuration_sample


Use cases Communicate with a MicroPython application

Digi XBee Mobile SDK User Guide 12

n Digi XBee Mobile - iOS
n Digi XBee Mobile - Android

Communicate with a MicroPython application
Current XBee modules (XBee 3) integrate MicroPython programmability for edge computing. This
allows you to provide some intelligence to the XBee device and create smart end nodes, eliminating
the need for an external micro-controller.

In this case, a mobile application communicates with the MicroPython application running inside the
XBee device either to act over the XBee device or to collect any kind of data from it.
This use case requires programmability on both the mobile phone and the XBee device side. The
MicroPython application that runs inside the XBee device should be developed and transferred using
the XBee MicroPython Pycharm Plugin.

Note For more information about the XBee MicroPython PyCharm Plugin, see the XBee MicroPython
Programming Guide.

Some of the scenarios you may want to communicate with a MicroPython application via BLE are:

n Perform a device provisioning operation (initial configuration) of XBee devices during the
network deployment process. This includes XBee firmware parameters and other settings
stored in the internal memory and accessible by the MicroPython application.

n Read diagnostic information from XBee devices already deployed in a network.
n Read transformed values from peripherals connected to the XBee device or command actions

to the MicroPython application.
n Provide a graphic UI for the product or system using the mobile phone screen as the interface.

Example
The XBee Mobile SDK provides an example that demonstrates this kind of communication between
the mobile phone and the MicroPython application of the XBee device. The example shows you how a

https://apps.apple.com/us/app/digi-xbee-mobile/id1438731568
https://play.google.com/store/apps/details?id=com.digi.xbeeconfigurator&hl=en
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm


Use cases Communicate with an external micro-controller

Digi XBee Mobile SDK User Guide 13

MicroPython application gets the temperature and humidity values from an I2C sensor connected to
the XBee device and sends them to a mobile application to be displayed in the screen.

Mobile phone side XBee module side (MicroPyton)

XBee BLE MicroPython Sample - Xamarin Relay Frames Temperature Sample - MicroPython

XBee BLE MicroPython Sample - Android

Communicate with an external micro-controller
In some cases, the XBee device is used as a wireless (RF or Cellular) interface enabler and the
intelligence of the device resides in an external micro-controller.

In this case, the purpose of the BLE interface is to communicate with the external micro-controller,
forwarding the data sent from the mobile device to the serial interface of the XBee device and vice-
versa. This use case is similar to the MicroPython one.
This use case requires a mobile application running on the mobile phone and another application
running in the external micro-controller. This last application can be developed using any of the XBee
libraries that Digi provides.

Note For more information about the XBee libraries, see XBee Java Library and XBee Python Library.

Some of the scenarios you may want to communicate with an external micro-controller via BLE are:

n Perform a device provisioning operation (initial configuration) of XBee devices during the
network deployment process. This includes XBee firmware parameters and other settings
stored in the external micro-controller.

n Read diagnostic information from XBee devices already deployed in a network.
n Read transformed values from peripherals connected to the XBee device or to the external

micro-controller or command actions to it.
n Provide a graphic UI for the product or system using the mobile phone screen as the interface.
n Transfer files to the external micro-controller or update its firmware over-the-air.

https://github.com/digidotcom/xbee-csharp/tree/master/examples/xamarin/BleMicroPythonSample
https://github.com/digidotcom/xbee-micropython/tree/master/samples/xbee/communication/relay_frames_temperature
https://github.com/digidotcom/xbee-android/tree/master/examples/ble_configuration_sample
https://github.com/digidotcom/xbee-java
https://github.com/digidotcom/xbee-python


Use cases Communicate with an external micro-controller

Digi XBee Mobile SDK User Guide 14

Example
The XBee Mobile SDK includes an example that demonstrates how a mobile application can
communicate via BLE with an external micro-controller connected to the XBee device. The example
shows you how to send a file from the mobile application and receive it in the micro-controller
connected to the XBee device.

Mobile phone side External micro-controller side

XBee BLE Microcontroller sample - Xamarin Receive Bluetooth file sample - Java

XBee BLE Microcontroller sample - Android Receive Bluetooth file sample - Python

https://github.com/digidotcom/xbee-csharp/tree/master/examples/xamarin/BleMicrocontrollerSample
https://github.com/digidotcom/xbee-java/tree/master/examples/communication/bluetooth/ReceiveBluetoothFileSample
https://github.com/digidotcom/xbee-android/tree/master/examples/ble_microcontroller_sample
https://github.com/digidotcom/xbee-python/tree/master/examples/communication/bluetooth/ReceiveBluetoothFileSample


Create an XBee Mobile application

The XBee Mobile SDK offers two libraries to develop XBee mobile applications, either cross-platform or
Android native applications:

Cross-platform applications 16
Android native applications 16

Digi XBee Mobile SDK User Guide 15



Create an XBee Mobile application Cross-platform applications

Digi XBee Mobile SDK User Guide 16

Cross-platform applications
Cross-platform application development has become a cost-effective solution to developmobile
applications that behave almost like native applications for multiple platforms. Cross-platform
application development frameworks allow you to create mobile applications that are compatible
with different mobile operating systems—commonly Android and iOS. Instead of developing two
separate apps you only develop one, then share that code among operating systems, making
platform-specific adjustments as necessary. The pros and cons of cross-platform application
development depend on the framework used to develop them.
Digi has chosen Xamarin as the cross-platform application development framework to create an XBee
mobile library: the XBee Library for Xamarin. Some of the reasons are:

n Xamarin uses C# as single language to create apps for all mobile platforms. In C# you can do
anything that can be achieved with Objective-C, Swift, or Java.

n Very high percentage of code share and reuse between platforms (up to 96%).
n Xamarin allows you to create platform-specific UI code layer when the cross-platform solution

does not work.
n Native UI controllers allow Xamarin to render native user interfaces for each operating system.
n Provides access to native APIs and libraries

The XBee Library for Xamarin includes an specific API to handle the connection and communication
with XBee devices through BLE in mobile applications developed with Xamarin.

Note See the Software requirements of the XBee Library for Xamarin before creating or importing an
application.

Create an application from scratch
Follow these steps to create an XBee mobile cross-platform application with Xamarin from scratch:

n Create an XBee Xamarin application from scratch

Import a sample application
Follow these steps to import an XBee mobile cross-platform sample application with Xamarin:

n Import an XBee Xamarin sample application

Android native applications
Since Digi already has a Java library to manage and communicate with XBee devices, we crated an
extension of that library that would help create XBee mobile applications for Android: the XBee library
for Android.
The XBee library for Android handles the connection and communication processes with XBee devices
in Android applications developed with Android Studio.

Create an application from scratch
Follow these steps to create an XBee mobile Android application from scratch:

n Create an XBee Android application from scratch

https://github.com/digidotcom/xbee-csharp
https://github.com/digidotcom/xbee-csharp
https://www.digi.com/resources/documentation/Digidocs/90002359/#reference/r_sw_reqs.htm
https://www.digi.com/resources/documentation/Digidocs/90002359/#reference/r_from_scratch.htm
http://www.digi.com/resources/documentation/Digidocs/90002359/#reference/r_import_sample.htm
https://github.com/digidotcom/xbee-android
https://github.com/digidotcom/xbee-android
https://github.com/digidotcom/xbee-android
https://www.digi.com/resources/documentation/digidocs/90001438/Default.htm#tasks/t_create_xb_android_app_scratch.htm


Create an XBee Mobile application Android native applications

Digi XBee Mobile SDK User Guide 17

Import a sample application
Follow these steps to import an XBee mobile Android sample application:

n Import an XBee Android sample application

https://www.digi.com/resources/documentation/digidocs/90001438/Default.htm#tasks/t_import_xb_manager_sample_app.htm

	Digi XBee Mobile SDK User Guide
	Bluetooth Low Energy in the XBee devices
	Enable and configure the BLE interface
	Open a secure connection with the XBee device
	BLE authentication using the XBee Mobile SDK

	Communicate with the XBee device
	Configure the XBee device
	Exchange data with other XBee interfaces


	Use cases
	Configure the XBee device
	Example
	Other resources

	Communicate with a MicroPython application
	Example

	Communicate with an external micro-controller
	Example


	Create an XBee Mobile application
	Cross-platform applications
	Create an application from scratch
	Import a sample application

	Android native applications
	Create an application from scratch
	Import a sample application



