
Remote Manager

Programmer Guide

Revision history—90001437-13

Version Date Description

H May 2016 Remote Manager platform release that includes the
following features and enhancements:

n Added expiration timeouts for health metric data.
See Setting health metrics preferences.

n Performance improvements and miscellaneous
editorial corrections.

I September 2016 Remote Manager platform release that includes the
following features and enhancements:

n Added ability to link Remote Manager accounts
together such that a parent account can access
and manage subaccounts. See About subaccounts.

n Performance improvements and miscellaneous
editorial corrections.

J February 2017 Remote Manager platform release that includes the
following new features and enhancements:

n Added support for secure provisioning. See Adding
and removing devices for information on adding
devices that require an installation code.

n Performance improvements and miscellaneous
editorial corrections.

K May 2018 n Added a Get Started section to the
documentation.

n Edited documentation.

Trademarks and copyright
Digi, Digi International, and the Digi logo are trademarks or registered trademarks in the United
States and other countries worldwide. All other trademarks mentioned in this document are the
property of their respective owners.
© 2019 Digi International Inc. All rights reserved.

Disclaimers
Information in this document is subject to change without notice and does not represent a
commitment on the part of Digi International. Digi provides this document “as is,” without warranty of
any kind, expressed or implied, including, but not limited to, the implied warranties of fitness or
merchantability for a particular purpose. Digi may make improvements and/or changes in this manual
or in the product(s) and/or the program(s) described in this manual at any time.

Digi Remote Manager Programmer Guide 2

Warranty
To view product warranty information, go to the following website:

www.digi.com/howtobuy/terms

Customer support
Gather support information: Before contacting Digi technical support for help, gather the following
information:
 Product name and model
 Product serial number (s)
 Firmware version
 Operating system/browser (if applicable)
 Logs (from time of reported issue)
 Trace (if possible)
 Description of issue
 Steps to reproduce
Contact Digi technical support: Digi offers multiple technical support plans and service packages.
Contact us at +1 952.912.3444 or visit us at www.digi.com/support.

Feedback
To provide feedback on this document, email your comments to

techcomm@digi.com

Include the document title and part number (Digi Remote Manager Programmer Guide, 90001437-13
K) in the subject line of your email.

Digi Remote Manager Programmer Guide 3

http://www.digi.com/howtobuy/terms
http://www.digi.com/support
mailto:techcomm@digi.com

Contents

Get started
About Remote Manager programming 13
Connecting applications to Remote Manager 13
Data flow from devices to customer applications 13

Remote Manager concepts
Subscriptions 16
Device IDs 16

Device ID Assignments 16
Full-length device IDs 16
Abbreviated device IDs 16
System-generated device IDs 17
Device IDs based on CDMA addresses 17
Device IDs based on MAC addresses 17
Device IDs based on GSM IMEI 18

Embedded device development 18
About data services 18

Data collections and files 18
Home collection tilde (~) character 18

Device information caching 19
Using cached data to respond to requests 19
Limiting information returned from requests 19

Web services HTTP client applications
Authentication best practices 20
Using a web browser 20
Using the API explorer 20
Using a Python script 20
Using a Java program 20

Web services conventions and versioning
URL specifications 23
Default media format 23

JSON formatting 24
XML formatting 24

Supported HTTP headers 24

Digi Remote Manager Programmer Guide 4

Digi Remote Manager Programmer Guide 5

Request headers 24
Response headers 24

Pagination options 24
Pagination parameters 24
Using pagination parameters 25

CRUD conventions 25
Post operation 25
Get operation 26
Put and Post operations 29
Delete operation 29

URL encoding (percent encoding) 30
Best practice: Use compound queries 30
Best practice: Wrap multiple queries into a single request 31
Best practice: Reuse HTTP sessions 31

Web services reference
openapi 34

URI 34
Formats 34

Query language for v1 APIs 35
Query language summary 35
Specify values in query conditions 35
Specify operators in query conditions 36
Example Queries 37

Deprecated APIs 39
Alarm 41

URI 41
Formats 41
Elements 41
almRuleConfig 43
almScopeConfig 44
Example: List all alarms 45
Example: Get details for an alarm 47
Example: Create data point condition alarm 48
Example: Create a DIA channel data point condition alarm 49
Example: Create a smart energy missing data point alarm 50
Example: Create a subscription usage alarm 51

AlarmStatus 52
URI 52
Formats 52
Elements 52
Example: Get statuses for all alarms 54
Example: Acknowledge a fired alarm 57
Example: Reset a fired alarm 58

AlarmStatusHistory 59
URI 59
Formats 59
Elements 59
Query parameters 60
Example: Get a list of all alarm statuses over time 61
Example: Get alarm status history for a specific alarm 64

AlarmTemplate 70
URI 70
Formats 70

Digi Remote Manager Programmer Guide 6

Elements 70
Alarm template types 72
almtScopeOptions 74
almtRules 75
Example: List all alarm templates 76

CarrierAuth 85
URI 85
Formats 85
Elements 86
Example: Get a list of carrier accounts 86
Example: Configure carrier account credentials 88
Example: Update a carrier account 89
Example: Delete a carrier account 90

DataPoint 91
URI 91
Formats 91
Elements 91
Parameters 93
Direct device uploads 93

DataStream 97
URI 97
Formats 97
Elements 97
Parameters 99

DeviceCore 100
URI 100
Formats 100
Elements 100

DeviceInterface 104
URI 104
Formats 104
Elements 104
Example: Get a list of devices and associated networks 105

DeviceMetaData 107
URI 107
Formats 107
Elements 107

DeviceVendor 109
URI 109
Formats 109
Elements 109

DeviceVendorSummary 111
URI 111
Formats 111
Elements 111

FileData 112
URI 112
Formats 112
Elements 112
Example: Get all file metadata 114
Example: Get files based on conditions 115
Example: Get files and embed contents in the result 116

FileDataCore 117
URI 117
Format 117

Digi Remote Manager Programmer Guide 7

Elements 117
FileDataHistory 118

URI 118
Formats 118
Elements 118

Group 119
URI 119
Formats 119
Elements 119

Monitor 120
URI 120
Formats 120
Elements 121
Example: List all monitors 126
Example: Create an HTTP monitor 128
Example: Create a TCP monitor 128
Example: Recover a disabled monitor 129
Example: Delete a monitor 130
Example: Delete monitors based on conditions 131
Example: Create a polling monitor 131
Example: Monitor Profile Manager status with a push monitor 131
HTTP/HTTPS transport protocol 133
TCP transport protocol 136

NetworkInterface 142
URI 142
Formats 142
Elements 142

NetworkInterfaceSubscriptionCore 145
URI 145
Formats 145
Elements 145

Remote command interface (RCI) 146
Schedule 147

URI 147
Formats 147
Elements 147
Example: Schedule device reboot 148

SCI (Server command interface) 150
SCI request 150
SCI targets 151
Synchronous requests 151
Asynchronous request 154
Ping request 156
Available operators 156
SMS messages 167
Wait for Device to Connect 177
Send a Disconnect 177
Satellite requests 178
SM/UDP 186

security 191
URI 191
Formats 191
Elements 191

Task 192
URI 192

Digi Remote Manager Programmer Guide 8

Formats 192
Elements 192
Example: Get a list of all tasks 194
Example: Get details for a task 195
Example: Upload a task definition 196
Example: Get a list of jobs for a schedule 196

Task template 197
Elements 197

v1/alerts 198
URI 198
Formats 198
Fields 199
Example: Datapoint condition alert 202
Example: List alerts 202
Example: Create one or more alerts 203

v1/devices 216
URI 216
Formats 216
Device fields 217
Channel, management, and metric fields 220
Parameters 221
Example: List all devices 222
Example: List all devices using query by tags 222
Example: Get a single device 224
Example: Create a device 225
Example: Create multiple devices 226
Example: Edit a device 227
Example: List device channels 228
Example: Delete a device 229

v1/events 229
URI 229
Formats 229

v1/groups 229
URI 229
Formats 230
Parameters 230

v1/health_configs 231
URI 231
Formats 231
Fields 231
Parameters 231
Example: Get a summary of the health_config API 232
Example: Get a list of health configurations for your account 233
Example: Get a specific health configuration in XML 234
Example: Disable a health configuration 235
Example: change a health configuration 236

v1/jobs 236
URI 237
Formats 237
Parameters 237
Query fields 237
Query operators 238
Query examples 238

v1/metadata 239
URI 239

Digi Remote Manager Programmer Guide 9

Formats 240
v1/monitors/history 240

Polling cursor 240
URI 241
Formats 241
Parameters 241
Example: Query polling monitor history 241

v1/settings 242
URI 242
Formats 242

v1/reports 244
URI 244
Formats 244
Parameters 245
Query fields 246
Query operators 247
Query examples 247
Example: Get a summary of the reports API 249
Example: Get a report of fired alarms 250
Example: Get a health status report 252
Example: Get connection status history report 252
Example: Get monitor status report 254

v1/streams 255
URI 255
Formats 255
Stream fields 256
History fields 257
Roll-up fields 257
Parameters 258
Direct device uploads 258
Example: List all streams 262
Example: Get a stream 263
Example: Create a stream 264
Example: Create multiple streams 265
Example: Add multiple data points to a data stream 265
Example: Edit a stream 267
Example: Delete a stream 268
Example: Get data history for a stream 269
Example: Delete data points for a stream 270
Example_Get rollup data for a stream 271
Example: Get carrier usage information 271

v1/users 272
URI 272
Formats 272
Fields 273

XbeeAttributeCore 275
URI 275
Formats 275
Elements 275
xeDeviceVersion 275
Example: Identify node attributes in your home area networks (HANs) 277

XbeeAttributeFull 279
URI 279
Formats 279
Elements 279

Digi Remote Manager Programmer Guide 10

Example: List ZigBee full attrbutes 280
XbeeClusterCore 282

URI 282
Formats 282
Elements 282
xeDeviceVersion 282
Example: List all clusters 284

XbeeCore 285
URI 285
Formats 285
Elements 285
Parameters 287
Example: List all nodes 288
Example: Request current list of nodes from a gateway 291
Example: Request node discovery 292
Example: Add a test label to a node 293

Deprecated APIs

DIA (device integration application)

ISO 8601 date and duration reference
ISO 8601 date format 297
ISO 8601 duration format 298

HTTP interface specification
Create a device ID 300
Uploading data to Remote Manager 301
Data limits related to direct device uploads 301
Sending a message to a device 301
Retrieve files ready for the device 302
Retrieve a specific message for a device 302
Deleting a message from a device inbox 302
Example: Post sensor readings using Python 302

UI descriptor reference
Menu templates 306
Menu element 306

id (required) 307
data 307
name (required) 307
page 307
required 307
dataRootDefault 307
organizeByGroup 308
indexBy 308

Automenu 308
id 308
dataRootDefault 308

Digi Remote Manager Programmer Guide 11

data 308
readonly 308

Page templates 308
id 309
help 309

Page contents 309
Unprocessed tag 309

Help templates 309

Get started

About Remote Manager programming 13
Connecting applications to Remote Manager 13
Data flow from devices to customer applications 13

Digi Remote Manager Programmer Guide 12

Get started About Remote Manager programming

Digi Remote Manager Programmer Guide 13

About Remote Manager programming
Remote Manager is a machine-to-machine (M2M) cloud-based network operating platform that
includes a variety of Application Programming Interfaces (API's). Remote Manager supports:

n Application to device data interaction (messaging)
n Application and device data storage
n Remote management of devices

Devices are associated with the server through the Internet or other wide area network connection,
which allows for communication between the device, server, and your applications. An important part
of this communication is the transfer of data from a device to the server. Users can control devices by
sending commands to devices or scheduling tasks. Devices can upload data to Data Streams on
Remote Manager which are then available for push notifications, alarms, or retrieval by Web Services
clients. Device communication can be achieved using Remote Manager devices, DIA (Device
Integration Application), or connecting your own device using Digi Cloud Connector.

Connecting applications to Remote Manager
Remote Manager provides a standard HTTP API that allows many ways to access data. HTTP APIs can
be accessed by:

n A standard browser by typing in the appropriate URL
n A Java Application running on a PC or server
n A Python Application running on a PC or server
n A Python Application running on a Device
n Anything that can make standard HTTP calls

Once the data is retrieved from the server, it can be used to do calculations, display graphs, monitor
something, and so on.

Data flow from devices to customer applications
Remote Manager directs data flow using a clear, efficient series of steps.

Device collects data and sends it to Remote Manager
Devices can collect data using Cloud Connector, DIA, or Smart Energy Frameworks. The formats of the
data and the associated Data Streams vary depending on the framework. Cloud Connector provides
the most flexibility.

n When a device is collecting data, its most efficient method of recording data involves keeping
track of the changes to the data and sending changes periodically. For example, if the data is
temperature, the device might only send the reading if the recorded value changes by a
minimum amount, or it may only update once a day, depending on which occurs first.

n If the device is recording data from many endpoints, it sends the data in batches rather than
one reading at a time.

Get started Data flow from devices to customer applications

Digi Remote Manager Programmer Guide 14

n The device includes retry logic in case the upload fails. Failure may occur if the device upload is
throttled or the server is busy, or in maintenance mode.

Data is saved to data streams in Remote Manager
Remote Manager stores Data received from devices in Data Streams. Data can be saved in more than
one data stream by using replication. For example, a temperature reading could be saved in a "floor
1" data stream and replicated into a "building x" data stream.

n When Remote Manager stores numeric data, it also creates rollups that compute statistics
based on time intervals. This allows users to make queries such as the hourly sum of all sodas
purchased at a vending machine.

n The amount of time the data is available on the server is determined by the TTL (time to live).
Raw data and rollup data use different TTLs of different lengths; rollup TTLs are longer than
raw data TTLs. When the TTL of a particular set of data expires, Remote Manager automatically
deletes the data. Remote Manager sets the TTL when data is stored. Default values and
maximum TTLs vary depending on your account’s tiered pricing model.

Customer application receives information from Remote Manager
Customer applications can receive data in several ways depending on the needs of the application:

n Push notifications
The Monitor API enables customer applications to register for asynchronous (push) notification
of events within Remote Manager. The registering application can choose which types of
events they are interested in. For example, the application can register to receive all data
stream data. The Monitor API allows the user to send notifications using HTTP or TCP
connections to the client application.

n Alarms
The user can configure alarms to process the data as it is saved in Remote Manager. Alarms
can watch for conditions. such as data values outside of a range or missing data. When an
alarm is triggered, Remote Manager can send the client notification via a monitor or email. The
alarm status will also display in the web-based user interface.

n Web service queries
The DataStream, DataPoint, and v1/streams web service APIs can be used to query for data.
The DataStream API can return information about all data streams in your account, including
metadata such as the data type and current value. The DataPoint API can return a list of
timestamped values for a specific data stream, and also can include metadata such as the
description and location, if included when the data was created. The v1/streams API can
manage both data streams and datapoints.

Remote Manager concepts

Subscriptions 16
Device IDs 16
Embedded device development 18
About data services 18
Device information caching 19

Digi Remote Manager Programmer Guide 15

Remote Manager concepts Subscriptions

Digi Remote Manager Programmer Guide 16

Subscriptions
Remote Manager subscriptions control access to Remote Manager features, and the available
features vary depending on the Remote Manager account edition: Platform, Standard, Premier, or
Developer.

Device IDs
A device ID is a unique 16-byte number used to uniquely identify a device within Remote Manager.
Most device IDs are derived from the device MAC address, IMEI number, or ESN number. If a device
does not have an assigned MAC, IMEI, or ESN, Remote Manager generates and assigns a random 16-
byte number for the device ID. See System-generated device IDs for more information.

Note In resource web services, device IDs are listed as devConnectwareId elements. See the Digi
Remote Manager Programmer Guide.

Device ID Assignments
A device ID is derived from the unique information from the device, in the order specified in the list
below.

1. The Ethernet interface MAC-48. See Device IDs based on MAC addresses.
2. The 802.11 interface MAC-48. See Device IDs based on MAC addresses.
3. The cellular modem IMEI for GSM devices. See Device IDs based on GSM IMEI.
4. The cellular modem ESN (Electronic Serial Number) for CDMA devices. See Device IDs based on

CDMA addresses.
5. The auto-generated format. See System-generated device IDs.

For example, if a device has an Ethernet interface and a cellular modem, the device ID is generated
from the Ethernet interface. If a device contains multiple interfaces of one type (such as two Ethernet
interfaces), a primary interface is selected and used as the source of the device ID.

Full-length device IDs
The full-length device ID is specified as four groups of eight hexadecimal digits separated by dashes.
For example:

01234567-89ABCDEF-01234567-89ABCDEF

Abbreviated device IDs
Device IDs can also be specified in an abbreviated form, without the leading groups of zeros. The
following table shows how some device IDs can be abbreviated.

Full device ID Abbreviated forms

00000000-89ABCDEF-01234567-89ABCDEF 89ABCDEF-01234567-89ABCDEF

https://www.digi.com/resources/documentation/digidocs/90001437-13/default.htm
https://www.digi.com/resources/documentation/digidocs/90001437-13/default.htm

Remote Manager concepts Device IDs

Digi Remote Manager Programmer Guide 17

Full device ID Abbreviated forms

00000000-00000000-01234567-89ABCDEF 00000000-01234567-89ABCDEF
01234567-89ABCDEF

01234567-89ABCDEF-01234567-89ABCDEF No abbreviated form

00000000-00000000-00000000-89ABCDEF 00000000-00000000-89ABCDEF
00000000-89ABCDEF
89ABCDEF

System-generated device IDs
Remote Manager can automatically generate and assign a device ID. Generated IDs are often used for
devices that do not have a unique identifier.
Here is a sample system-generated device ID:

0008cccc-eeeeeeee-vvvvvvvv-gggggggg

System-generated value Description

cccc Unique value set per cluster, dependent on the generated cluster ID

eeeeeeee Typically all zeroes, but may be randomly assigned

vvvvvvvv Represents a provision ID for the customer, currently the vendor ID

gggggggg Randomly assigned

Device IDs based on CDMA addresses
CDMA (Code Division Multiple Access) device IDs have two addressing schemes:

n 32-bit Electronic Serial Number (ESN) scheme
n 56-bit Mobile Equipment Identifier (MEID) scheme

Both addresses can be specified in hexadecimal or decimal format.

ESN-Hex address: MM-SSSSSS
Device ID mapping: 00020000-00000000-00000000-MMSSSSSS
MEID-Hex address: RR-XXXXXX-ZZZZZZ-C
Device ID mapping: 00040000-00000000-00RRXXXX-XXZZZZZZ

Note A check digit is appended to MEID addresses. The check digit is not part of the MEID and is
therefore not included in the device ID mapping.

Device IDs based on MAC addresses
Device IDs can be derived from the 48-bit MAC address.
For example:

MAC address: 112233:445566
Device ID mapping: 00000000-00000000-112233FF-FF445566

Remote Manager concepts Embedded device development

Digi Remote Manager Programmer Guide 18

Device IDs based on GSM IMEI
Device IDs can be derived from a GSM IMEI address which consists of 14 decimal digits plus a check
digit. The check digit is not officially part of IMEI. However, since modems commonly report the IMEI
including check digit and it is typically listed on labels, the check digit is included in the device ID
mapping.

Example IMEI: AA-BBBBBB-CCCCCC-D
Device ID mapping: 00010000-00000000-0AABBBBB-BCCCCCCD

Embedded device development
Devices manufactured by Digi International contain firmware enabled for Remote Manager. Third-
party device developers can create devices that are Remote Manager enabled using development
kits, such as Cloud Connector.
When a device connects to Remote Manager, the device supplies a vendor ID and device type. The
vendor ID is the namespace for the vendor and the device type is a vendor-specific unique name for a
device type. Because device types are vendor-specific, multiple vendors can use the same name for a
device type. The device type name must be unique within the vendor only—not unique within all of
Remote Manager.
For example, a device manufacturer with the vendor ID 3000 can create a device type named
iVendingMachine, while another vendor with the vendor ID 3001 can create a device type of the same
name. The two device types of the same name are unique because they are associated with different
vendor IDs.
For more information on using third-party devices with Remote Manager, see the Digi Cloud Connector
Getting Started Guide and Digi Cloud Connector User Guide.

About data services
Remote Manager data services allow you to collect and manage data from remote devices. For
example, a device can send data files to the Remote Manager server, and Remote Manager
temporarily caches the data files in a database. The files are stored by default for 24 days. Any files
stored in the my_tasks folder are saved indefinitely.

Data collections and files
Remote Manager stores the files in collections, which are similar to folders. You can access files and
collections using the Remote Manager user interface and web services.

Home collection tilde (~) character
For each user account, Remote Manager creates a home collection, which is represented by the tilde
(~) character. All files for your user account are stored relative to your home directory. For example, if
you created a collection named mydata, you can access the mydata collection as follows:

~/mydata
A collection for a device includes the Device ID.
~/00000000-00000000-00000000-12345678

Remote Manager concepts Device information caching

Digi Remote Manager Programmer Guide 19

Device information caching
To provide fast response times and reduce network bandwidth, Remote Manager caches device-
related data. Some of the cached data is related to a specific device and some is meta data about
groups of devices. The Remote Manager server has numerous caching mechanisms to organize and
store this data. The sections below describe these mechanisms and the data they store.

Using cached data to respond to requests
By default, the cache is automatically used to satisfy requests for information. However the caller has
some ability to control whether cache is used:

cache="false"
When issuing an SCI request, the caller can specify the attribute cache="false" on the
send_message command. This attribute instructs the server to ignore the cache and
always forward the request on to the device. A caller may do this if they suspect the
cache is stale and it is a way to refresh the contents of the cache.
cache="only"
The caller can also specify cache="only" to instruct the server to provide responses from
the cache only and never send them on to the device. A user can use this option if they
are interested in the data if it is cached but they do not want to incur the overhead of
communicating with the device.

Limiting information returned from requests
The user can control the amount of data returned from a request using the reply attribute:

reply="error"
Returns only error responses from a send_message command.
reply="none"
Does not return any responses from a send_message command.
reply="all"
Returns all responses from a send_message command.

The reply attribute only controls how much of the response data is streamed back to the user.
Remote Manager inspects the reply data and updates the various data caches appropriately,
regardless of the reply attribute.

Web services HTTP client applications

Remote Manager provides a Rest-style API over HTTP (or HTTPS). Users can write HTTP clients in
their preferred programming language that get data from Remote Manager and use or display the
data. Examples of such clients include web pages and programs written in a language such as Python
or Java. These clients send requests to the Remote Manager server using standard HTTP requests.
Remote Manager supports the following HTTP requests: GET, PUT, POST, and DELETE.

Authentication best practices
The Remote Manager server supports basic HTTP authentication and only valid users can access the
database. To reduce the authentication overhead of multiple requests, use either an HTTP library that
caches cookies or cache the cookies JSESSIONID and SID yourself.

Using a web browser
You can enter any GET request into the URL field of a web browser. Some browser plug-ins allow you
to call other HTTP methods.

Using the API explorer
The Remote Manager API explorer available via the Documentation > API Explorer tab allows you to
run any web service request, as well as export code as Python, Java, Ruby, Perl, or C## code.

Using a Python script
You can write Python scripts to send standard HTTP requests to the server. These scripts use Python
libraries to handle connecting to the Remote Manager server, sending the request, and getting the
reply. See the following sites for more information on Remote Manager Python open source libraries:

n https://github.com/digidotcom/python-devicecloud
n https://digidotcom.github.io/python-devicecloud/

Using a Java program
You can send HTTP requests to the server through a Java program. Below is a code snippet of an
HTTP POST of an SCI request written in Java.

import java.io.IOException;
import java.io.InputStream;

Digi Remote Manager Programmer Guide 20

https://github.com/digidotcom/python-devicecloud
https://digidotcom.github.io/python-devicecloud/

Web services HTTP client applications Using a Java program

Digi Remote Manager Programmer Guide 21

import java.io.OutputStreamWriter;
import java.net.HttpURLConnection;
import java.net.URL;
import java.util.Scanner;
/*
* Can replace this with any base 64 encoder for basic authentication. For java 6
installations on Sun's JRE you can use "sun.misc.BASE64Encoder"
* however this will not work in some installations (using OpenJDK). Java mail
(javax.mail.internet.MimeUtility) also contains a Base 64 encoder in Java 6.
* A public domain version exists at
http://iharder.sourceforge.net/current/java/base64/
*/
import org.apache.commons.codec.binary.Base64;
/**
* This is a stub class with a main method to run a Remote Manager web service.
*/
public class WebServiceRequest {
/**
* Run the web service request
*/
public static void main(String[] args) {

try {
// Create url to Remote Manager server for a given web service request
URL url = new URL("https://remotemanager.digi.com/ws/sci");
HttpURLConnection conn = (HttpURLConnection)url.openConnection();
conn.setDoOutput(true);
conn.setRequestMethod("POST");
// replace with your username/password
String userpassword = "YourUsername:YourPassword";
// can change this to use a different base64 encoder
String encodedAuthorization = Base64.encodeBase64String

(userpassword.getBytes()).trim();
conn.setRequestProperty("Authorization", "Basic "+

encodedAuthorization);
// Send data to server
conn.setRequestProperty("Content-Type", "text/xml");
OutputStreamWriter out = new OutputStreamWriter(conn.getOutputStream());
out.write("<sci_request version=\"1.0\"> \r\n");
out.write(" <send_message> \r\n");
out.write(" <targets> \r\n");
out.write(" <device id=\"00000000-00000000-00000000-00000000\"/>\r\n");
out.write(" </targets> \r\n");
out.write(" <rci_request version=\"1.1\">\r\n");
out.write(" <query_state/>\r\n");
out.write(" </rci_request>\r\n");
out.write(" </send_message>\r\n");
out.write("</sci_request>\r\n");
out.close();
// Get input stream from response and convert to String
conn.disconnect();
conn.setDoInput(true);
InputStream is = conn.getInputStream();
Scanner isScanner = new Scanner(is);
StringBuffer buf = new StringBuffer();
while(isScanner.hasNextLine()) {

buf.append(isScanner.nextLine() +"\n");
}
// Output response to standard out
String responseContent = buf.toString();

Web services HTTP client applications Using a Java program

Digi Remote Manager Programmer Guide 22

System.out.println(responseContent);
} catch (IOException e) {

// Print any exceptions that occur
e.printStackTrace();

}
}
}

Web services conventions and versioning

Remote Manager has two versions of supported web services:

n Pre-version 1 APIs: Original set of Remote Manager APIs released before API versioning was
introduced.

n Version 1 APIs: Set of APIs each of which includes v1 as the first element in the resource URI.

Pre-version 1 and version 1 APIs have different defaults for media formats: Pre-version 1 APIs default
to XML for the media format; Version 1 APIs default to JSON for the media format.

URL specifications
Remote Manager web services APIs are RESTful in nature. Each URL relates to a specific Remote
Manager resource or list of resources.
For example, the following URL retrieves a list of devices:

https://remotemanager.digi.com/ws/v1/devices/inventory

The following URL retrieves a single device with device ID 00000000-00000000-00409DFF-FF038457:

https://remotemanager.digi.com/ws/v1/devices/inventory/00000000-00000000-
00409DFF-FF038457

And the following URL requests a list of alarm templates:

https://remotemanager.digi.com/ws/AlarmTemplate

Default media format
The default media format for Remote Manager APIs depends on the API version:

n Pre-version 1 APIs default to XML as the media format.
n Version 1 APIs default to JSON as the media format.

Note Some browsers set the Accept header to XML. If you unexpectedly receive an XML response from
a version 1 API request, your browser Accept header may be set to XML. To force JSON output
regardless of the browser Accept header, include the JSON (.json) extension on your request. For
example:

https://remotemanager.digi.com/ws/v1/devices/inventory.json

Digi Remote Manager Programmer Guide 23

Web services conventions and versioning Supported HTTP headers

Digi Remote Manager Programmer Guide 24

JSON formatting
In JSON, resources are represented as JSON objects and lists are represented as arrays.

XML formatting
In XML, resources are wrapped with a resource element (for example, <device>) and lists are wrapped
in a <list> element. In addition, all results returned in response data are wrapped in a <results>
element as the root.

Supported HTTP headers
Remote Manager APIs support standard HTTP headers. The following request and response headers
are handled specially or are custom headers.

Request headers
The following request headers are supported:

n Accept: Indicates the expected content type for a request, as well as the content type for the
response for all HTTP methods. At present, application/JSON and application/XML are
supported. If you do not specify an accept header or you specify a header with an unsupported
type, the application/JSON header is used.

Response headers
The following response headers are supported:

n Delete-Count: Custom header set with the number of resources deleted on a DELETE request.
If the number of deleted cannot be determined, then this header is not set. For example,
deleting all history (data points) for a stream does not return the deleted count.

n Location: Set to the URL of the created/updated resource of a PUT or POST. For multiple
resources, the location header is set to the last resource successfully created/updated.

Pagination options
Requests that return multiple resources are paginated. The default and maximum page size is 1000.
You can request smaller pages using the size parameter.

Pagination parameters
Paged responses include:

n next_uri: URI value that can be used to request the next page of data. No value is returned if
there are no more pages available.

n count: Number of resources returned.
n size: Size requested.
n cursor: Placeholder that can be used to request the next page of data. The cursor is included in

the next_uri value, which is not returned if there are no more pages available.

Depending on the request type, the response may also contain the following values:

Web services conventions and versioning CRUD conventions

Digi Remote Manager Programmer Guide 25

n start_time: Start time for time-series data requests.
n end_time: End time for time-series data requests.

Using pagination parameters
To use page parameters to paginate responses:

1. Request the first page of data.
2. Use the next_uri value to request the next page.
3. Continue to use the next_uri value returned in a page to get the next page.
4. When no next_uri is returned, you have retrieved all the data.

CRUD conventions
The following CRUD (Create/Read/Update/Delete) conventions are used:

Action Create Read Update Delete

HTTP Verb POST/PUT* GET PUT DELETE

*Use POST to create a resource that has a system-generated ID; use PUT to create a resource with a
known ID (that is, an ID composed of known composite values).

Post operation
HTTP POST is used to add resources to your account.

Format
/ResourcePath

Request content
XML or JSON representation of a resource OR a list of resources in the format <list>. .
.</list>

Example request content:

<DeviceCore>
<devMac>00:40:9D:22:22:21</devMac>

</DeviceCore>

Example request content with a list:

<list>
<DeviceCore>

<devMac>00:40:9D:22:22:22</devMac>
</DeviceCore>
<DeviceCore>

<devMac>00:40:9D:22:22:23</devMac>
</DeviceCore>

</list>

Web services conventions and versioning CRUD conventions

Digi Remote Manager Programmer Guide 26

Return codes

201 (Created) A new resource (or list of resources) was created.
207 (Multi-status) A list was passed in but not all were created.
400 (Bad request) The request is invalid.
401 (Unauthorized) The user ID/password is invalid.
403 (Forbidden) Access to the resource is not authorized.
429 (Too many requests) The request has been throttled. Wait and try again.
500 (Internal server error) The request cannot be handled due to a server error. Wait
and try again.

Response header
Location contains the URI for a created resource (last resource created for a list).

Return content
XML or JSON document with a root result element containing a location element for each resource
created and any errors encountered.

Get operation
HTTP GET is used to retrieve a specific resource by ID or a list of resources.

Format

/ResourcePath gets a list of all resources in the account matching the authorization
credentials
/ ResourcePath /.json gets a list of all resources in JSON format
/ ResourcePath /.xls gets a list of all resources in Excel format
/ ResourcePath /ID gets a resource for the specified ID
/ ResourcePath /ID.json gets a resource for the specified ID in JSON format
/ ResourcePath /ID.xls gets a resource for the specified ID in Excel format

Query parameters

start - the record number to start the results from
size - the number of records to return
condition - a query where condition is used to filter the results
orderby - a column used to sort the results

Request headers

Name: Accept Value: application/json Effect: Returns a JSON view of the resource
Name: Accept Value: application/xml Effect: Returns an XML view of the resource
(default)
Name: Accept Value: application/vnd.ms-excel Effect: Returns an excel view of the
resource

Web services conventions and versioning CRUD conventions

Digi Remote Manager Programmer Guide 27

Name: Authorization Value: Basic {Base64 encoded password} Effect: Authorizes
resource access

Note We recommend you use the Accept-Encoding: gzip, deflate request header to instruct the
server to return the data compressed with a return header of Transfer-Encoding: gzip. This improves
GET performance and is generally transparent to most client libraries.

Return codes

200 (OK)
400 (Bad request) The request is invalid.
401 (Unauthorized) The user ID/password is invalid.
403 (Forbidden) Access to the resource is not authorized.
429 (Too many requests) The request has been throttled. Wait and try again.
500 (Internal server error) The request cannot be handled due to a server error. Wait
and try again.

Return content
The return content is an XML document with a root result element containing one or more elements
of the resource type and any errors encountered; or a JSON document with results and errors. Any
elements that have no content (essentially null) are not returned.
The returned content includes a header to help the user make multiple calls.

<result>
<!-- total number of resources that match the condition -->

<resultTotalRows>13</resultTotalRows>
<!-- the record number of the first result -->

<requestedStartRow>11</requestedStartRow>
<!-- the number of results returned -->

<resultSize>2</resultSize>
<!-- the number of results requested -->

<requestedSize>2</requestedSize>
<!-- the remaining number of resources -->

<remainingSize>0</remainingSize>
<!-- ... List of the resources -->

Examples
http://<hostname>/ws/DeviceCore
Returns all devices in the account matching the authorization credentials
http://<hostname>/ws/DeviceCore/32
Returns the device information matching the device where ID=32 (ID is an auto-generated number in
Remote Manager)
http://<hostname>/ws/DeviceCore?start=201&size=200
Returns 200 records starting with record 201
http://<hostname>/ws/DeviceCore?condition=devRecordStartDate>'2010-01-17T00:00:00Z'
Returns all devices added after midnight Jan 17th, 2010
http://<hostname>/ws/DeviceCore/?condition=devConnectwareId='00000000-00000000-00409DFF-
FF123456'
Returns the record for device ID "00000000-00000000-00409DFF-FF123456"
Sample result of http://<hostname>/ws/DeviceCore?start=11&size=2 request:

Web services conventions and versioning CRUD conventions

Digi Remote Manager Programmer Guide 28

<?xml version="1.0" encoding="UTF-8"?>
<result>

<resultTotalRows>13</resultTotalRows>
<requestedStartRow>11</requestedStartRow>
<resultSize>2</resultSize>
<requestedSize>2</requestedSize>
<remainingSize>0</remainingSize>
<DeviceCore>

<id>
<devId>155</devId>
<devVersion>0</devVersion>

</id>
<devRecordStartDate>2010-06-25T21:28:00Z</devRecordStartDate>
<devMac>00:40:9D:3D:71:A6</devMac>
<devConnectwareId>00000000-00000000-00409DFF-FF3D71A6</devConnectwareId>
<cstId>3</cstId>
<grpId>3</grpId>
<devEffectiveStartDate>2010-06-25T21:28:00Z</devEffectiveStartDate>
<devTerminated>false</devTerminated>
<dvVendorId>0</dvVendorId>
<dpDeviceType>ConnectPort X2</dpDeviceType>
<dpFirmwareLevel>34209795</dpFirmwareLevel>
<dpFirmwareLevelDesc>2.10.0.3</dpFirmwareLevelDesc>
<dpRestrictedStatus>0</dpRestrictedStatus>
<dpLastKnownIp>10.20.1.161</dpLastKnownIp>
<dpGlobalIp>10.20.1.161</dpGlobalIp>
<dpConnectionStatus>1</dpConnectionStatus>
<dpLastConnectTime>2010-06-28T13:35:00Z</dpLastConnectTime>
<dpContact />
<dpDescription>EMS - Aux gateway #2 - Test certificate</dpDescription>
<dpLocation>Jeff's office</dpLocation>
<dpPanId>0x134f</dpPanId>
<xpExtAddr>00:13:a2:00:40:5c:0a:ba</xpExtAddr>
<dpServerId>ClientID[3]</dpServerId>

</DeviceCore>
<DeviceCore>

<id>
<devId>156</devId>
<devVersion>0</devVersion>

</id>
<devRecordStartDate>2010-06-25T20:46:00Z</devRecordStartDate>
<devMac>00:40:9D:29:5B:4C</devMac>
<devConnectwareId>00000000-00000000-00409DFF-FF295B4C</devConnectwareId>
<cstId>3</cstId>
<grpId>3</grpId>
<devEffectiveStartDate>2010-06-25T20:46:00Z</devEffectiveStartDate>
<devTerminated>false</devTerminated>
<dvVendorId>0</dvVendorId>
<dpDeviceType>Digi Connect WAN VPN</dpDeviceType>
<dpFirmwareLevel>34014219</dpFirmwareLevel>
<dpFirmwareLevelDesc>2.7.2.11</dpFirmwareLevelDesc>
<dpRestrictedStatus>0</dpRestrictedStatus>
<dpLastKnownIp>10.20.1.144</dpLastKnownIp>
<dpGlobalIp>10.20.1.144</dpGlobalIp>
<dpConnectionStatus>1</dpConnectionStatus>
<dpLastConnectTime>2010-06-28T13:35:00Z</dpLastConnectTime>
<dpDescription>Test device</dpDescription>
<dpLocation />
<dpServerId>ClientID[3]</dpServerId>

Web services conventions and versioning CRUD conventions

Digi Remote Manager Programmer Guide 29

</DeviceCore>
</result>

Put and Post operations
HTTP PUT is used to update a resource at the specified location. If a resource has an ID containing
composite values rather than generated, it can be created using a PUT. A resource that has an ID that
is generated by the database must be created using POST.

Format
/ResourcePath/ID
Example

/NetworkInterface/1

Request content
XML or JSON representation of an updated resource.
An ID must be specified either in the path or in the content. If an ID is in both places, they must match.

Return codes

200 (OK)
201 (Created) A new resource (or list of resources) was created. (POST)
207 (Multi-status) A list was passed in and not all were created. Specific errors are
included in the response body. (POST)
400 (Bad request) The request is invalid.
401 (Unauthorized) The user ID/password is invalid.
403 (Forbidden) Access to the resource is not authorized.
429 (Too many requests) The request has been throttled. Wait and try again.
500 (Internal server error) The request cannot be handled due to a server error. Wait
and try again.

Return content
XML or JSON document with a root result element containing any errors encountered.

Delete operation
HTTP DELETE is used to delete a resource from your account.

Format
/ResourcePath/ID
Example

http://<hostname>/DeviceCore/1

Web services conventions and versioning URL encoding (percent encoding)

Digi Remote Manager Programmer Guide 30

Return codes

200 (OK)
204 (No Content) The delete was successful and no content is being returned.
400 (Bad request) The request is invalid.
401 (Unauthorized) The user ID/password is invalid.
403 (Forbidden) Access to the resource is not authorized. You may need a subscription.
429 (Too many requests) The request has been throttled. Wait and try again.
500 (Internal server error) The request cannot be handled due to a server error. Wait
and try again.

Return content
XML or JSON document with a root result element containing any errors encountered.

URL encoding (percent encoding)
URLs cannot contain spaces or non-ASCII characters. Use URL encoding to convert non-ASCII
characters into a format that can be transmitted over the internet. URL encoding replaces non-ASCII
characters with a percent sign (%) followed by two hexadecimal digits.
For example, when including a timezone such as +01:00 on a DataPoint request, URL encode the
request as follows:

https://remotemanager.digi.com/ws/DataPoint/00010000-00000000-03515790-
56477597/ain1/val?startTime=2016-11-01T16:00:03.0000000%2B01:00

For more information on URL encoding, see HTML URL Encoding Reference.

Best practice: Use compound queries
Most web services sample requests show simple requests to best demonstrate how each web service
API works. However, you may need to set up compound queries. Here are two examples that
demonstrate how compound queries operate, along with the corresponding expected results:
The following example:

/ws/v1/streams/history/dia/channel/00000000-00000000-00409DFF-
FF72E822/system0/cpu_utilization?start_time=2017-01-10T17:00:00.000&end_
time=2017-01-10T18:00:00.000&order=desc

Returns data points that occurred within a one-hour period in descending order.
The following example:

/ws/DeviceCore?condition=dpDeviceType='ConnectPort X2e SE' AND
dpLastConnectTime>'2017-01-27T00:00:00.000Z'

Returns all the X2e devices that connected after January 27th at midnight GMT.

Note Modern browsers MIME-encode spaces (%20) and punctuation, such as single quote (%27) on
your behalf, but many programming languages do not. In those cases you must put them in proper
MIME format in your code.

http://www.w3schools.com/tags/ref_urlencode.asp

Web services conventions and versioning Best practice: Wrap multiple queries into a single request

Digi Remote Manager Programmer Guide 31

Best practice: Wrap multiple queries into a single request
To perform multiple tasks, wrap all the tasks within a single request. For example, to perform the
following three tasks:

1. Get a list of files in Python
2. Look up the device info
3. Look up system settings

Wrap the three tasks into a single request as follows:

<sci_request version="1.0">
<send_message cache="false">

<!-- list targets for query -->
<targets>

<device id="00000000-00000000-00000000-00000000" />
</targets>
<rci_request version="1.1">

<!-- Request python files -->
<do_command target="file_system">

<ls dir="/WEB/python" />
</do_command>
<!-- Lookup device state -->
<query_state>

<device_info />
</query_state>
<!-- Return system settings -->
<query_setting>

<system />
</query_setting>

</rci_request>
</send_message>

</sci_request>

Best practice: Reuse HTTP sessions
When a web service request is made, the request must send credentials via HTTP basic
authentication. Subsequent calls can use the same session created on the first request. Using one
HTTP session rather than multiple sessions (one for each request) improves performance because you
need not repeat authentication.
Using the same session, however, does add complexity to the client code because the code must
handle HTTP cookie management.

Web services reference

Web service GET POST PUT DELETE Description

Alarm Alarm and alarm
properties

AlarmStatus Alarm status
information

AlarmStatusHistory Alarm status history
information

AlarmTemplate Alarm templates

CarrierAuth Carrier authorization

DataPoint Data point
management

DataStream Data stream
management

DeviceCore Device and selected
properties

DeviceInterface Device and network
interface properties

DeviceMetaData Device descriptor data

DeviceVendor Embedded device
developer information

DeviceVendorSummary Device vendor
properties

FileData Data files

Digi Remote Manager Programmer Guide 32

Web services reference

Digi Remote Manager Programmer Guide 33

Web service GET POST PUT DELETE Description

FileDataCore Data files information

FileDataHistory Data file history
information

Group Device groups

Monitor Monitors management

NetworkInterface Device modem list

NetworkInterfaceSubscriptionCore Carrier subscription
information

openapi Experimental feature
that provides OpenAPI
summary for the
v1/devices and
v1/streams APIs

Schedule Operations, tasks, and
schedules

SCI (Server command interface) Device-specific
commands

security Device connection
password

Task Task management

v1/alerts Alert properties

v1/devices Device and selected
properties

v1/events Event properties.

v1/groups Group properties

v1/health_configs Device health
configurations

v1/jobs Job properties

Web services reference openapi

Digi Remote Manager Programmer Guide 34

Web service GET POST PUT DELETE Description

v1/metadata Device descriptors

v1/monitors/history Query monitors

v1/reports Device reports

v1/settings Device settings

v1/streams Data stream and
points management

v1/users User properties

XbeeAttributeCore XBee attributes

XbeeAttributeFull XBee attributes

XbeeClusterCore XBee cluster
information

XbeeCore XBee nodes and
properties

openapi
Use the openapi web service to get summary information on the ws/v1/devices and ws/v1/streams
APIs.

Note This service is experimental and may be changed or removed in a future release.

URI
https://<hostname>/ws/openapi

Formats

HTTP method Format Description

GET /ws/openapi Get a summary of the ws/v1/devices and ws/v1/streams APIs.

Web services reference Query language for v1 APIs

Digi Remote Manager Programmer Guide 35

Query language for v1 APIs
Some Remote Manager v1 APIs include a query parameter for GET requests. Using the query
parameter, you can build complex expressions for selecting Remote Manager objects.

Query language summary
n Similar in concept to SQL or other query languages. Use conditions and operators based on

field types.
n Single quoted text literals 'TheText' .
n Text escape for quote character is the quote: 'isn''t difficult' .
n Numeric literals support 0x prefix for hex.
n Relative values from "now' for timestamp values. For example, -10s for 10 seconds ago.
n Text-based comparisons are case insensitive.
n Use the and and or keywords as well as parenthesis to group simple conditions into more

complex expressions.
n Use the special value keyword empty to represent empty string, null, and unset.

Note Although the query parameter in each API provides the same query expression capability, the
fields that you can query depend on the fields returned for objects of that API. For example, a query
using the ws/v1/devices/inventory API specifies device fields, while a query using the
ws/v1/alerts/inventory APIs specifies alert fields.

Note Be sure to correctly URL encode the query expression (for example space encodes to %20 in a
URL parameter value.

Specify values in query conditions
The syntax for specifying literal values varies depending on the type of literal value. Not all syntaxes
from other query languages are supported.

Value Type Description

String
Enumerated
String
Group

Specify these values using single quotes. If the value contains a single quote, specify
two single quotes. Enumerated strings cannot accept all values, for example
connection_status can only be connected or disconnected.
For example:

n connection_status = 'connected'
n name = 'Fred''s Device'
n group = 'TheGroup'

Web services reference Query language for v1 APIs

Digi Remote Manager Programmer Guide 36

Value Type Description

Numeric Specify these values using a normal decimal number notation or a hex number
notation.

n value = 0
n value = -3.14
n value = 0x10

Timestamp Specify these values using a relative time notation where only negative values are
supported. Use a one letter suffice to indicate time units: s for seconds, m for
minutes, h for hours, d for days (exactly 24 hours) and w for weeks (exactly 7 days).

n last_updated > -60m
n last_connect >= -24h

Geoposition Specify a bounding box value. The geoposition can be within or outside of the
bounding box. The bounding box consists of four coordinates of the form: [Southwest
longitude, Southwest latitude, Northeast longitude, Northwest latitude].
For example, to select items approximately within the continental United States:

n geoposition within [125.0, 25.0, 65.0, 50.0]

Specify operators in query conditions
The following table summarizes Remote Manager v1 query language conditions.

Operator Permitted Types

=
<>

Enumerated String
Enumerated Value
Group
Tags
Timestamp

Exact equality or inequality.
For a tag, indicates the presense or
absense of the tag on the item.
For a group, indicates the full group
path.

<
<=
>=
>

String
Numeric
Timestamp

The string, number or timestamp
sorts before or after the value.

contains String
Tag

The String contains the specified
substring.
Any tag contains the specified
substring.

Web services reference Query language for v1 APIs

Digi Remote Manager Programmer Guide 37

Operator Permitted Types

startswith
endswith

String
Tag
Group

The string starts with or ends with
the specified value.
Any tag starts with or ends with the
specified value.
For a group, targets the full group
path. For example, group
startswith 'test/' targets any
device in the root/test group and all
subgroups, while group startswith
'test' targets any device in the
root/test* groups and any
subgroups.

within
outside

Geoposition The geoposition is within or outside
of a bounding box.
For example, to select items
approximately within the
continental United Statess, query
for geoposition within [125.0, 25.0,
65.0, 50.0]

Example Queries
n Complex Queries

l query=group startsWith '/NorthWest' and (connection_status =
'disconnected' or signal_percent < 20) - find any devices in the /Northwest
group and any subgroups that are either disconnected or have a low signal strength

l query=tags = 'important' and (health_status = 'error' or health_
status = 'warning') - Find any devices that have the 'important' tag and are in an
error or warning health status

l query=last_connect = empty - Find any devices whose last connect value is unset
(have never connected).

n Group Queries
l query=group = '/test' - query full group path, so matches any device in group '/test'

and ignores any subgroups.
l query=group startsWith 'test/' - query full group path, so matches any device in

the test root group and any subgroups.
l query=group startsWith 'test' - query full group path, so matches any device in

any root group whose name starts with 'test' and all subgroups.
l query=group endsWith '/leaf' - query full group path, so matches any device in

any path that ends with the group name 'leaf'.
n Tag Queries

l query=tags = empty - matches any device having no tags.
l query=tags <> empty - matches any device having any tags.
l query=tags = 'sensor' - matches any device having a tag 'sensor'.

Web services reference Query language for v1 APIs

Digi Remote Manager Programmer Guide 38

l query=tags <> 'sensor' - matches any device having no tag 'sensor'.
l query=tags contains 'ns' - matches any device having any tag containing 'ns'.
l query=tags startsWith 'sens' - matches any device having any tag that starts

with 'sens'.
l query=tags endsWith 'or' - matches any device having any tag that ends with 'or'.

n Geoposition Queries
l query=geoposition within [125.0, 25.0, 65.0, 50.0] - matches any

device with coordinates within the specified bounding box (approximately the continental
United States).

l query=geoposition outside [125.0, 25.0, 65.0, 50.0] - matches any
device with coordinates outside the specified bounding box (approximately the continental
United States).

Deprecated APIs
The following APIs have been deprecated and should not be used in new code. For compatibility,
deprecated APIs will be supported for a limited time, but code containing the deprecated APIs should
be modified to use a supported API as soon as possible.

Resource path Migrate to use

CarrierSubscripti
on

/ws/v1/streams/inventory?category=carrier

CarrierUsage /ws/v1/streams/history/{device_id}/carrier/{sim_id}/usage/
{usage_id}

data ws/FileData

DiaChannelDataF
ull

ws/DataPoint/dia/channel/<Device Id>/<instance>/<channel>

DiaChannelDataH
istoryFull

ws/DataPoint/dia/channel/<Device Id>/<instance>/<channel>

XbeeAttributeDat
aCore

ws/DataPoint/se/attr/<Device Id>/<XBee Address>/<Endpoint
Id>/<Cluster Type>/<Cluster Id>/<Attribute Id>

XbeeAttributeDat
aFull

ws/DataPoint/se/attr/<Device Id>/<XBee Address>/<Endpoint
Id>/<Cluster Type>/<Cluster Id>/<Attribute Id>

XbeeAttributeDat
aHistoryCore

ws/DataPoint/se/attr/<Device Id>/<XBee Address>/<Endpoint
Id>/<Cluster Type>/<Cluster Id>/<Attribute Id>

XbeeAttributeDat
aHistoryFull

ws/DataPoint/se/attr/<Device Id>/<XBee Address>/<Endpoint
Id>/<Cluster Type>/<Cluster Id>/<Attribute Id>

XbeeAttributeRep
ortingCore

Use the following SCI commands:

start_reports
get_local_reporting_configurations

XbeeEventDataCo
re

ws/DataPoint/se/event/<Device Id>/<XBee Address>/<Endpoint
Id>/<Cluster Type>/<Cluster Id>/<Attribute Id>

XbeeEventDataFu
ll

ws/DataPoint/se/event/<Device Id>/<XBee
Address>/<Endpoint Id>/<Cluster Type>/<Cluster
Id>/<Attribute Id>

Digi Remote Manager Programmer Guide 39

Deprecated APIs

Digi Remote Manager Programmer Guide 40

Resource path Migrate to use

XbeeEventDataHi
storyCore

ws/DataPoint/se/event/<Device Id>/<instance>/<channel>

XbeeEventDataHi
storyFull

ws/DataPoint/se/event/<Device Id>/<XBee Address>/<Endpoint
Id>/<Cluster Type>/<Cluster Id>/<Attribute Id>

Alarm

Digi Remote Manager Programmer Guide 41

Alarm
Use the Alarm web service to create, list, or update alarms within your Remote Manager account.
The maximum number of alarms per account is 16. When creating an alarm, you must specify an
alarm template on which to base the alarm. See also the AlarmTemplate web service and Alarm
template types.

URI
http://<hostname>/ws/Alarm

Formats

HTTP method Format Description

GET /ws/Alarm Get a list of all alarms.

GET /ws/Alarm{almId} Get details for a specific alarm.

POST /ws/Alarm/{almtId} Create a new alarm based on an existing alarm template.

PUT /ws/Alarm/{almId} Update an existing alarm.

DELETE /ws/Alarm/{almId} Delete an alarm.

Elements

almId
Remote Manager identifier for the alarm.

cstId
Remote Manager identifier for the customer.

almtID
System-generated identifier for an alarm template. To get a list of available alarm template, use the
AlarmTemplate web service.

grpId
Remote Manager identifier for the customer group.

almName
Name of the alarm.

almDescription
Description of the alarm.

Alarm

Digi Remote Manager Programmer Guide 42

almEnabled
Boolean value that indicates whether the alarm is enabled.

Value Description

true Alarm is enabled.

false Alarm is disabled.

almPriority
Keyword that indicates the user-defined alarm priority: high, medium, or low.

almScopeConfig
Specifies the resource scope for the alarm. Scope options include:

Scope Description

Group Applies the alarm to the specified group indicated by the full group path.

Device Applies the alarm to the specified device ID. For example, 00000000-00000000-
00000000-00000000.

XbeeNode Applies the alarm to the specified XbeeNode extended address. For example,
00:13:A2:00:00:00:00:00.

Resource Applies the alarm to a data stream path or pattern. You can use the wildcard charater
asterisk (*) to match any element in the data stream path. For example,
dia/channel/*/lth/temp matches all the lth temperature reading for all devices.

Global Applies the alarm at the customer level to monitor all instances of an entity. For
example, you can create an alarm to monitor the total number of web services calls for
your account. This option is available for subscription usage alarms only.

See almScopeConfig for the required XML structure for almScopeConfig.

almRuleConfig
Specifies the rule configurations for an alarm:

Rule configuration Description

FireRule A list of variables that specify the condition for firing the alarm.

ResetRule A list of variables that specify the condition for resetting the alarm.

By default, all alarms reset automatically. You can disable automatic reset by passing the enabled =
false attribute for the ResetRule element. For example, <ResetRule enabled = "false">.
See almRuleConfig for the required XML structure for almRuleConfig.
See Alarm template types for a list of available fire and reset variables for each alarm template type.

Alarm

Digi Remote Manager Programmer Guide 43

almRuleConfig
Use the following XML structure for almRuleConfig.

<almRuleConfig>
<Rules>

<FireRule name="fireRule1">
<Variable name="operator" value=">"/>
<Variable name="thresholdvalue" value="1"/>
<Variable name="timeUnit" value="seconds"/>
<Variable name="timeout" value="10"/>
<Variable name="type" value="double"/>

</FireRule>
<ResetRule name="resetRule1">

<Variable name="type" value="double"/>
<Variable name="thresholdvalue" value="1"/>
<Variable name="operator" value="<="/>
<Variable name="timeUnit" value="seconds"/>
<Variable name="timeout" value="10"/>

</ResetRule>
</Rules>

</almRuleConfig>

Note By default, all alarms reset automatically. You can disable automatic reset by passing the
enabled = false attribute for ResetRule element; for example, <ResetRule enabled = "false">.

Alarm

Digi Remote Manager Programmer Guide 44

almScopeConfig
Use the following XML structure for almScopeConfig.

<almScopeConfig>
<ScopingOptions>

<Scope name="Resource" value="Weather/USA/*/Minneapolis"/>
</ScopingOptions>

</almScopeConfig>

Note You can specify only one <ScopingOption> per <almScopeConfig> element; and you can specify
only one <Scope> per <ScopingOptions>. To specified multiple <scopes> for an alarm, use multiple
<almScopeConfig> statements.

Alarm

Digi Remote Manager Programmer Guide 45

Example: List all alarms
The following example shows how to list all alarms for your account.

Request

GET ws/Alarm

Response
The sample result shows the result header and three alarms.

<result>
<resultTotalRows>3</resultTotalRows>
<requestedStartRow>0</requestedStart/row>
<resultSize>3</resultSize>
<requestedSize>1000</requestedSize>
<remainingSize>0<remainingSize>

<Alarm>
<almId>142</almId> <!-- alarm #1 -->
<cstId>2</cstId>
<almtId>4</almtId>
<grpId>2</grpId>
<almName>Device Excessive Connections</almName>
<almDescription>Detects devices with an excessive number of
connection attempts</almEnabled>

<almPriority>0</almPriority>
<almEnabled>true</almName>
<almScopeConfig>

<ScopingOptions>
<Scope name="Group" value="/CUS0000001_Digi_International/" />

</ScopingOptions>
</almScopeConfig>
<almRuleConfig>

<Rules>
<FireRule name="fireRule1">

<Variable name="disconnectWindow" value="5" />
<Variable name="disconnectCount" value="5" />

</FireRule>
<ResetRule name="resetRule1>

<Variable name="reconnectWindow" value="5" />
</ResetRule>

</Rules>
</almRuleConfig>

</Alarm>

<Alarm>
<almId>151</almId> <!-- alarm #2 -->
<cstId>2</cstId>
<almtId>2</almtId>
<grpId>2</grpId>
<almName>Device Offline</almName>
<almDescription>Detects when a device disconnects from Remote Manager and fails

to reconnect within the specified time.</almEnabled>
<almPriority>1</almPriority>

Alarm

Digi Remote Manager Programmer Guide 46

<almEnabled>true</almName>
<almScopeConfig>

<ScopingOptions>
<Scope name="Group" value="/CUS0000001_Digi_International/" />

</ScopingOptions>
</almScopeConfig>
<almRuleConfig>

<Rules>
<FireRule name="fireRule1">

<Variable name="reconnectWindowDuration" value="10" />
</FireRule>
<ResetRule name="resetRule1 />

</Rules>
</almRuleConfig>

</Alarm>

<Alarm>
<almId>152</almId> <!-- alarm #3 -->
<cstId>2</cstId>
<almtId>1</almtId>
<grpId>2</grpId>
<almName>System Alarm</almName>
<almDescription>Detects when system alarm condistions occur.</almEnabled>
<almPriority>0</almPriority>
<almEnabled>true</almName>
<almScopeConfig>
</almScopeConfig>
<almRuleConfig>
</almRuleConfig>

</Alarm>
</result>

Alarm

Digi Remote Manager Programmer Guide 47

Example: Get details for an alarm
The following example shows how to get details for a sample alarm with an alarm ID of 3035.

Request

GET ws/Alarm/3035

Response

<result>
<resultTotalRows>1</resultTotalRows>
<requestedStartRow>0</requestedStartRow>
<resultSize>1</resultSize>
<requestedSize>1000</requestedSize>
<remainingSize>0</remainingSize>
<Alarm>
<almId>3035</almId>
<cstId>2</cstId>
<almtId>2</almtId>
<grpId>11959</grpId>
<almName>Device Offline</almName>
<almDescription>Detects when a device disconnects from Remote Manager and

fails to reconnected within the specified time</almDescription>
<almEnabled>true</almEnabled>
<almPriority>2</almPriority>
<almScopeConfig>
<ScopingOptions>
<Scope name="Group" value="/CUS000000_Digi_Test/PW_Test/"/>

</ScopingOptions>
</almScopeConfig>
<almRuleConfig>
<Rules>
<FireRule name="fireRule1">
<Variable name="reconnectWindowDuration" value="1"/>

</FireRule>
<ResetRule name="resetRule1"/>

</Rules>
</almRuleConfig>

</Alarm>
</result>

Alarm

Digi Remote Manager Programmer Guide 48

Example: Create data point condition alarm
The following sample shows how to create a data point condition alarm that fires when the outside
temperature data point is less than than 10 degrees Fahrenheit below zero.

Note In this example, the alarm template ID for the data point condition alarm is 9 (almtId=9). To find
the almtId for an alarm type, send a GET ws/AlarmTemplate request to get a list of all available alarm
templates.

PUT ws/Alarm

<Alarm>
<almtId>9</almtId> <!-- Datapoint Condition Alarm -->
<almName>Minneapolis Temperature</almName>
<almDescription>Fire when it gets extremely cold.</almDescription>
<almScopeConfig>

<ScopingOptions>
<Scope name="Resource" value="temperature/MN/Minneapolis" />

</ScopingOptions>
</almScopeConfig>
<almRuleConfig>

<Rules>
<FireRule>

<Variable name="thresholdValue" value="-10" />
<Variable name="timeUnit" value="minutes" />
<Variable name="type" value="numeric" />
<Variable name="timeout" value="10" />
<Variable name="operator" value="<" />

</FireRule>
<ResetRule>

<Variable name="thresholdValue" value="-10" />
<Variable name="timeUnit" value="minutes" />
<Variable name="type" value="numeric" />
<Variable name="timeout" value="10" />
<Variable name="operator" value=">" />

</ResetRule>
</Rules>

</almRuleConfig>
</Alarm>

Alarm

Digi Remote Manager Programmer Guide 49

Example: Create a DIA channel data point condition alarm
The following sample shows how to create a DIA channel data point condition alarm that fires when
the helium level in an MRI gets low.

Note In this example, the alarm template ID for the DIA channel data point condition alarm is 6
(almtId=6). To find the almtId for an alarm type, send a GET ws/AlarmTemplate request to get a list of
all available alarm templates.

PUT ws/Alarm

<Alarm>
<almtId>6</almtId> <!-- Dia Channel DataPoint Condition Alarm -->
<almName>Low Helium</almName>
<almDescription>Fires when the helium level in the MRI gets

low</almDescription>
<almScopeConfig>

<ScopingOptions>
<Scope name="Group" value="CUS001_ABC/Test/" />

</ScopingOptions>
</almScopeConfig>
<almRuleConfig>

<Rules>
<FireRule>

<Variable name="thresholdValue" value="10" />
<Variable name="channelName" value="helium" />
<Variable name="instanceName" value="mri" />
<Variable name="timeUnit" value="seconds" />
<Variable name="type" value="numeric" />
<Variable name="timeout" value="5" />
<Variable name="operator" value="<" />

</FireRule>
<ResetRule>

<Variable name="thresholdValue" value="10" />
<Variable name="channelName" value="helium" />
<Variable name="instanceName" value="mri" />
<Variable name="timeUnit" value="seconds" />
<Variable name="type" value="numeric" />
<Variable name="timeout" value="5" />
<Variable name="operator" value=">" />

</ResetRule>
</Rules>

</almRuleConfig>
</Alarm>

Alarm

Digi Remote Manager Programmer Guide 50

Example: Create a smart energy missing data point alarm
The following sample shows how to create a smart energy missing data point alarm that fires when
the devices do not report smart energy data.

Note In this example, the alarm template ID for the smart energy missing data point alarm is 12
(almtId=12). To find the almtId for an alarm type, send a GET ws/AlarmTemplate request to get a list
of all available alarm templates.

PUT ws/Alarm

<Alarm>
<almtId>12</almtId> <!-- Missing Smart Energy DataPoint alarm -->
<almName>Missing Smart Energy DataPoint</almName>
<almDescription>Fires when devices have not reported SmartEnergy data

within the specified time</almDescription>
<almScopeConfig>
<ScopingOptions>
<Scope name="Group" value="/CUS001_ABC/" />

</ScopingOptions>
</almScopeConfig>
<almRuleConfig>
<Rules>
<FireRule>
<Variable name="uploadTimeUnit" value="hours" />
<Variable name="clusterType" value="*" />
<Variable name="readingTimeUnit" value="4" />
<Variable name="attributeId" value="4" />
<Variable name="uploadInterval" value="1" />
<Variable name="clusterId" value="*" />
<Variable name="endpointId" value="*" />
<Variable name="readingInterval" value="10" />

</FireRule>
<ResetRule />

</Rules>
</almRuleConfig>

</Alarm>

Alarm

Digi Remote Manager Programmer Guide 51

Example: Create a subscription usage alarm
The following sample shows how to create a subscription usage alarm that fires when Verizon cellular
usage data exceeds 2 MB. The subscription usage alarm must specify the svcID along with a metric.
Use the CustomerRatePlan web service to get a list of svcIDs.

Note In this example, the alarm template ID for the subscription usage alarm is 8 (almtId=8). To find
the almtId for an alarm type, send a GET ws/AlarmTemplate request to get a list of all available alarm
templates.

PUT ws/Alarm

<Alarm>
<almtId>8</almtId> <!-- Subscription Usage alarm -->
<almName>Verizon Cellular Usage</almName>
<almDescription>Fires when verizon cellular usage data exceeds 2MB

</almDescription>
<almScopeConfig>
<ScopingOptions>
<Scope name="Device" value="00000000-00000000-000000FF-FF000001" />

</ScopingOptions>
</almScopeConfig>
<almRuleConfig>
<Rules>
<FireRule>
<Variable name="unit" value="mb" />
<Variable name="thresholdValue" value="2" />
<Variable name="svcId" value="14" />
<Variable name="metric" value="transferred" />

</FireRule>
<ResetRule />

</Rules>
</almRuleConfig>

</Alarm>

AlarmStatus

Digi Remote Manager Programmer Guide 52

AlarmStatus
Use the AlarmStatus web service to retrieve the current status of one or more alarms or to
update the status of an alarm.

URI
http://<hostname>/ws/AlarmStatus

Formats

HTTP method Format Description

GET /ws/AlarmStatus Get
statuses for
all current
alarms.

GET /ws/AlarmStatus/{almId} Get
statuses for
a specific
alarm.

PUT /ws/AlarmStatus/{almId}/{almsSourceEntityId} Update the
alarm
status.

Elements

id
Unique identifier for the alarm status that consists of two elements:

ID Element Description

almId System-generated identifier for the alarm.

almsSourceEntityId System-generated identifier for the entity associated with the alarm status,
such as a device or task.

almsStatus
Current status of the alarm:

Status value Description

0 Alarm is reset.

AlarmStatus

Digi Remote Manager Programmer Guide 53

Status value Description

1 Alarm is triggered.

2 Alarm is acknowledged.

almsTopic
Topic for the alarm.

cstId
Remote Manager identifier for the customer.

almsUpdateTime
Time at which the alarm status was last updated (ISO 8601 standard format).

almsPayload
Payload associated with the status change for the alarm in XML format. The payload can be any event
object in the system that caused the status of the alarm to change. Typically, the payload is a web
services object, such as a monitor or device core object.

AlarmStatus

Digi Remote Manager Programmer Guide 54

Example: Get statuses for all alarms
The following sample request shows how to get a list of all alarm statuses for all alarms.

Request

GET ws/AlarmStatus

Response

<?xml version="1.0" encoding="UTF-8"?>
<result>

<resultTotalRows>4</resultTotalRows>
<requestedStartRow>0</requestedStartRow>
<resultSize>4</resultSize>
<requestedSize>1000</requestedSize>
<remainingSize>0</remainingSize>
<AlarmStatus>

<id>
<almId>142</almId> <!-- alarm 142 almId #1 -->
<almsSourceEntityId>46911</almsSourceEntityId>

</id>
<almsStatus>2</almsStatus>
<almsTopic>Alarm.System.Monitor.inactive</almsTopic>
<cstId>2</cstId>
<almsUpdateTime>2012-06-27T21:02:09.567Z</almsUpdateTime>
<almsPayload>

<Payload>
<Message>Monitor disconnected: node left the cluster</Message>
<Monitor>

<monId>46911</monId>
<cstId>2</cstId>
<monLastConnect>2012-06-27T17:08:27.457Z</monLastConnect>

<monTopic>AlarmTemplate,Alarm,AlarmStatus,DeviceCore,XbeeCore</monTopic>
<monTransportType>alarm</monTransportType>
<monFormatType>xml</monFormatType>
<monBatchSize>100</monBatchSize>
<monCompression>none</monCompression>
<monStatus>1</monStatus>
<monBatchDuration>10</monBatchDuration>

</Monitor>
</Payload>

</almsPayload>
</AlarmStatus>
<AlarmStatus>

<id>
<almId>142</almId> <!-- alarm 142 almId #2 -->
<almsSourceEntityId>Monitor:46911</almsSourceEntityId>

</id>
<almsStatus>0</almsStatus>
<almsTopic>Alarm.System.Monitor.active</almsTopic>
<cstId>2</cstId>
<almsUpdateTime>2012-06-27T22:01:40.953Z</almsUpdateTime>
<almsPayload>

<Payload>

AlarmStatus

Digi Remote Manager Programmer Guide 55

<Message>Monitor connected</Message>
<Monitor>

<monId>46911</monId>
<cstId>2</cstId>
<monLastConnect>2012-06-27T21:39:50.833Z</monLastConnect>
<monTopic>AlarmStatus,AlarmTemplate,Notification,Alarm</monTopic>
<monTransportType>alarm</monTransportType>
<monFormatType>xml</monFormatType>
<monBatchSize>100</monBatchSize>
<monCompression>none</monCompression>
<monStatus>0</monStatus>
<monBatchDuration>10</monBatchDuration>

</Monitor>
</Payload>

</almsPayload>
</AlarmStatus>
<AlarmStatus>

<id>
<almId>151</almId> <!-- alarm 151 almId #1 -->
<almsSourceEntityId>00000000-00000000-00409DFF-

FF441634</almsSourceEntityId>
</id>
<almsStatus>1</almsStatus>
<almsTopic>Alarm.DeviceOffline</almsTopic>
<cstId>2</cstId>
<almsUpdateTime>2012-07-02T15:25:57.387Z</almsUpdateTime>
<almsPayload>

<Payload>
<DeviceCore>

<id>
<devId>11116</devId>
<devVersion>0</devVersion>

</id>
<devRecordStartDate>2012-07-02T13:27:00.000Z</devRecordStartDate>
<devMac>00:40:9D:44:16:34</devMac>
<devConnectwareId>00000000-00000000-00409DFF-

FF441634</devConnectwareId>
<cstId>2</cstId>
<grpId>2</grpId>
<devEffectiveStartDate>2012-07-

02T13:27:00.000Z</devEffectiveStartDate>
<devTerminated>false</devTerminated>
<dvVendorId>4261412867</dvVendorId>
<dpDeviceType>CPX2e SE</dpDeviceType>
<dpFirmwareLevel>50331744</dpFirmwareLevel>
<dpFirmwareLevelDesc>3.0.0.96</dpFirmwareLevelDesc>
<dpRestrictedStatus>0</dpRestrictedStatus>
<dpLastKnownIp>10.9.16.17</dpLastKnownIp>
<dpGlobalIp>66.77.174.126</dpGlobalIp>
<dpConnectionStatus>0</dpConnectionStatus>
<dpLastConnectTime>2012-07-02T13:26:35.627Z</dpLastConnectTime>
<dpContact />
<dpDescription />
<dpLocation />
<dpPanId>0xf02d</dpPanId>
<xpExtAddr>00:13:A2:00:40:5C:0A:6A</xpExtAddr>
<dpServerId />
<dpZigbeeCapabilities>875</dpZigbeeCapabilities>
<grpPath>/CUS0000001_Digi_International/</grpPath>

AlarmStatus

Digi Remote Manager Programmer Guide 56

</DeviceCore>
</Payload>

</almsPayload>
</AlarmStatus>
<AlarmStatus>

<id>
<almId>152</almId> <!-- alarm 152 almId #1 -->
<almsSourceEntityId>Monitor:47827</almsSourceEntityId>

</id>
<almsStatus>0</almsStatus>
<almsTopic>Alarm.System.Monitor.active</almsTopic>
<cstId>2</cstId>
<almsUpdateTime>2012-07-02T02:10:57.130Z</almsUpdateTime>
<almsPayload>

<Payload>
<Message>Monitor connected</Message>
<Monitor>

<monId>47827</monId>
<cstId>2</cstId>
<monLastConnect>2012-06-29T19:18:10.287Z</monLastConnect>

<monTopic>XbeeCore,DeviceCore,AlarmStatus,AlarmTemplate,Notification,Alarm</monTo
pic>

<monTransportType>alarm</monTransportType>
<monFormatType>xml</monFormatType>
<monBatchSize>100</monBatchSize>
<monCompression>none</monCompression>
<monStatus>1</monStatus>
<monBatchDuration>10</monBatchDuration>

</Monitor>
</Payload>

</almsPayload>
</AlarmStatus>

</result>

AlarmStatus

Digi Remote Manager Programmer Guide 57

Example: Acknowledge a fired alarm
The following sample request shows how to acknowledge a fired alarm. The sample alarm ID is 3140,
the almsSourceEntity for the alarm event is 00000000-00000000-00409DFF-FF53231C.

Request

PUT ws/AlarmStatus/3140/00000000-00000000-00409DFF-FF53231C/

<AlarmStatus>
<almsStatus>2</almsStatus>

</AlarmStatus>

GET ws/AlarmStatus/3140/00000000-00000000-00409DFF-FF53231C/

Response

<?xml version="1.0" encoding="ISO-8859-1"?>
<result>
<resultTotalRows>1</resultTotalRows>
<requestedStartRow>0</requestedStartRow>
<resultSize>1</resultSize>
<requestedSize>1000</requestedSize>
<remainingSize>0</remainingSize>
<AlarmStatus>
<id>
<almId>3140</almId>
<almsSourceEntityId>00000000-00000000-00409DFF-

FF53231C</almsSourceEntityId>
</id>
<almsStatus>2</almsStatus>
<almsTopic>Alarm.DeviceOffline</almsTopic>
<cstId>2</cstId>
<almsUpdateTime>2014-07-07T22:06:26.193Z</almsUpdateTime>
<almsPayload>
<Payload>
<Method>Manual</Method>

</Payload>
</almsPayload>

</AlarmStatus>
</result>

AlarmStatus

Digi Remote Manager Programmer Guide 58

Example: Reset a fired alarm
The following sample request uses the PUT method with the AlarmStatus web service to reset a fired
alarm. The almID is 3140 and almsSourceEntity for the alarm event is 00000000-00000000-00409DFF-
FF53231C.

Request

PUT ws/AlarmStatus/3140/00000000-00000000-00409DFF-FF53231C/

<AlarmStatus>
<almsStatus>0</almsStatus>

</AlarmStatus>

GET ws/AlarmStatus/3140/00000000-00000000-00409DFF-FF53231C/

Response

<?xml version="1.0" encoding="ISO-8859-1"?>
<result>
<resultTotalRows>1</resultTotalRows>
<requestedStartRow>0</requestedStartRow>
<resultSize>1</resultSize>
<requestedSize>1000</requestedSize>
<remainingSize>0</remainingSize>
<AlarmStatus>
<id>
<almId>3140</almId>
<almsSourceEntityId>00000000-00000000-00409DFF-

FF53231C</almsSourceEntityId>
</id>
<almsStatus>0</almsStatus>
<almsTopic>Alarm.DeviceOffline</almsTopic>
<cstId>2</cstId>
<almsUpdateTime>2014-07-07T22:06:26.193Z</almsUpdateTime>
<almsPayload>
<Payload>
<Method>Manual</Method>

</Payload>
</almsPayload>

</AlarmStatus>
</result>

AlarmStatusHistory

Digi Remote Manager Programmer Guide 59

AlarmStatusHistory
Use the AlarmStatusHistory web service to retrieve a record of alarm statuses over time.

URI
http://<hostname>/ws/AlarmStatusHistory

Formats

HTTP method Format Description

GET /ws/AlarmStatusHistory Get a list of
all alarm
statuses
over time.

GET /ws/AlarmStatusHistory/{almId} Get a list of
alarm
statuses
over time
for a
specific
alarm.

Elements

id
Unique identifier for the alarm status that consists of two elements:

ID Element Description

almId System-generated identifier for the alarm.

almsSourceEntityId System-generated identifier for the entity associated with the alarm status,
such as a device or task.

almsStatus
Current status of the alarm:

Status value Description

0 Alarm is reset.

1 Alarm is triggered.

2 Alarm is acknowledged.

AlarmStatusHistory

Digi Remote Manager Programmer Guide 60

almsTopic
Topic for the alarm.

cstId
Remote Manager identifier for the customer.

almsUpdateTime
Time at which the alarm status was last updated (ISO 8601 standard format).

almsPayload
Payload associated with the status change for the alarm in XML format. The payload can be any event
object in the system that caused the status of the alarm to change. Typically, the payload is a web
services object, such as a monitor or device core object.

Query parameters

size
Number of resources to return for a GET request. Allowable value is a number from 1 to 1000. The
default is 1000.

pageCursor
Page cursor that was returned from a previous request that can be used to retrieve the next page of
data.

startTime
Start time (inclusive) for the status history you want to retrieve.

endTime
End time (exclusive) for the status history you want to retrieve.

order
Sort order for the retrieved data: asc for ascending or desc for descending.

AlarmStatusHistory

Digi Remote Manager Programmer Guide 61

Example: Get a list of all alarm statuses over time
The following sample request shows how to get all statuses for all configured alarms over time.

Request

GET ws/AlarmStatusHistory

Response (abbreviated)

<?xml version="1.0" encoding="ISO-8859-1"?>
<result>

<resultSize>580</resultSize>
<requestedSize>1000</requestedSize>
<pageCursor>5a0319a4-7c95-11e4-a62c-fa163e4e63b3</pageCursor>
<requestedStartTime>-1</requestedStartTime>
<requestedEndTime>-1</requestedEndTime>
<AlarmStatusHistory>

<id>
<almId>9219</almId>
<almsSourceEntityId>00000000-00000000-BBCCDDFF-

FF004000</almsSourceEntityId>
</id>
<almsStatus>0</almsStatus>
<almsTopic>Alarm.DeviceOffline</almsTopic>
<cstId>2</cstId>
<almsUpdateTime>2014-11-10T23:48:42.594Z</almsUpdateTime>
<almsPayload>

<Payload>
<DeviceCore>

<id>
<devId>317792</devId>
<devVersion>0</devVersion>

</id>
<devRecordStartDate>2014-08-13T17:41:00.000Z</devRecordStartDate>
<devMac>BB:CC:DD:00:40:00</devMac>
<devConnectwareId>00000000-00000000-BBCCDDFF-

FF004000</devConnectwareId>
<cstId>2</cstId>
<grpId>20686</grpId>
<devEffectiveStartDate>2014-08-

13T17:41:00.000Z</devEffectiveStartDate>
<devTerminated>false</devTerminated>
<dvVendorId>50331650</dvVendorId>
<dpDeviceType>Joshs Device</dpDeviceType>
<dpFirmwareLevel>16777216</dpFirmwareLevel>
<dpFirmwareLevelDesc>1.0.0.0</dpFirmwareLevelDesc>
<dpRestrictedStatus>0</dpRestrictedStatus>
<dpLastKnownIp>199.17.162.22</dpLastKnownIp>
<dpGlobalIp>199.17.162.22</dpGlobalIp>
<dpConnectionStatus>1</dpConnectionStatus>
<dpLastConnectTime>2014-11-10T23:48:42.394Z</dpLastConnectTime>
<dpContact/>
<dpDescription/>
<dpLocation/>
<dpMapLat>44.932017</dpMapLat>

AlarmStatusHistory

Digi Remote Manager Programmer Guide 62

<dpMapLong>-93461594000000.000000</dpMapLong>
<dpServerId>ClientID[5]</dpServerId>
<dpZigbeeCapabilities>0</dpZigbeeCapabilities>
<dpCapabilities>68178</dpCapabilities>
<grpPath>/CUS0000002_Systems_Assurance/WSU/</grpPath>
<dpLastDisconnectTime>2014-11-

03T22:46:03.460Z</dpLastDisconnectTime>
<dpLastUpdateTime>2014-10-22T15:52:44.247Z</dpLastUpdateTime>
<dpHealthStatus>-1</dpHealthStatus>

</DeviceCore>
</Payload>

</almsPayload>
<almsSeverity>1</almsSeverity>

</AlarmStatusHistory>
<AlarmStatusHistory>

<id>
<almId>9219</almId>
<almsSourceEntityId>00000000-00000000-BBCCDDFF-

FF004000</almsSourceEntityId>
</id>
<almsStatus>1</almsStatus>
<almsTopic>Alarm.DeviceOffline</almsTopic>
<cstId>2</cstId>
<almsUpdateTime>2014-11-11T03:42:29.477Z</almsUpdateTime>
<almsPayload>

<Payload>
<DeviceCore>

<id>
<devId>317792</devId>
<devVersion>0</devVersion>

</id>
<devRecordStartDate>2014-08-13T17:41:00.000Z</devRecordStartDate>
<devMac>BB:CC:DD:00:40:00</devMac>
<devConnectwareId>00000000-00000000-BBCCDDFF-

FF004000</devConnectwareId>
<cstId>2</cstId>
<grpId>20686</grpId>
<devEffectiveStartDate>2014-08-

13T17:41:00.000Z</devEffectiveStartDate>
<devTerminated>false</devTerminated>
<dvVendorId>50331650</dvVendorId>
<dpDeviceType>Joshs Device</dpDeviceType>
<dpFirmwareLevel>16777216</dpFirmwareLevel>
<dpFirmwareLevelDesc>1.0.0.0</dpFirmwareLevelDesc>
<dpRestrictedStatus>0</dpRestrictedStatus>
<dpLastKnownIp>199.17.162.22</dpLastKnownIp>
<dpGlobalIp>199.17.162.22</dpGlobalIp>
<dpConnectionStatus>0</dpConnectionStatus>
<dpLastConnectTime>2014-11-10T23:48:42.393Z</dpLastConnectTime>
<dpContact/>
<dpDescription/>
<dpLocation/>
<dpMapLat>44.932017</dpMapLat>
<dpMapLong>-93461594000000.000000</dpMapLong>
<dpServerId/>
<dpZigbeeCapabilities>0</dpZigbeeCapabilities>
<dpCapabilities>68178</dpCapabilities>
<grpPath>/CUS0000002_Systems_Assurance/WSU/</grpPath>
<dpLastDisconnectTime>2014-11-

AlarmStatusHistory

Digi Remote Manager Programmer Guide 63

11T03:37:29.368Z</dpLastDisconnectTime>
<dpLastUpdateTime>2014-10-22T15:52:44.247Z</dpLastUpdateTime>
<dpHealthStatus>-1</dpHealthStatus>

</DeviceCore>
</Payload>

</almsPayload>
<almsSeverity>1</almsSeverity>

</AlarmStatusHistory>

AlarmStatusHistory

Digi Remote Manager Programmer Guide 64

Example: Get alarm status history for a specific alarm
The following sample request shows how to retrieve alarm status history for alarm ID 9219 with
source entity ID 00000000-00000000-BBCCDDFF-FF004000.

Request

GET ws/AlarmStatusHistory/9219/00000000-00000000-BBCCDDFF-FF004000/

Response (abbreviated)

<?xml version="1.0" encoding="ISO-8859-1"?>
<result>

<resultSize>29</resultSize>
<requestedSize>1000</requestedSize>
<pageCursor>3ab1d732-7c95-11e4-a62c-fa163e4e63b3</pageCursor>
<requestedStartTime>-1</requestedStartTime>
<requestedEndTime>-1</requestedEndTime>
<AlarmStatusHistory>

<id>
<almId>9219</almId>
<almsSourceEntityId>00000000-00000000-BBCCDDFF-

FF004000</almsSourceEntityId>
</id>
<almsStatus>0</almsStatus>
<almsTopic>Alarm.DeviceOffline</almsTopic>
<cstId>2</cstId>
<almsUpdateTime>2014-11-10T23:48:42.594Z</almsUpdateTime>
<almsPayload>

<Payload>
<DeviceCore>

<id>
<devId>317792</devId>
<devVersion>0</devVersion>

</id>
<devRecordStartDate>2014-08-13T17:41:00.000Z</devRecordStartDate>
<devMac>BB:CC:DD:00:40:00</devMac>
<devConnectwareId>00000000-00000000-BBCCDDFF-

FF004000</devConnectwareId>
<cstId>2</cstId>
<grpId>20686</grpId>
<devEffectiveStartDate>2014-08-

13T17:41:00.000Z</devEffectiveStartDate>
<devTerminated>false</devTerminated>
<dvVendorId>50331650</dvVendorId>
<dpDeviceType>Joshs Device</dpDeviceType>
<dpFirmwareLevel>16777216</dpFirmwareLevel>
<dpFirmwareLevelDesc>1.0.0.0</dpFirmwareLevelDesc>
<dpRestrictedStatus>0</dpRestrictedStatus>
<dpLastKnownIp>199.17.162.22</dpLastKnownIp>
<dpGlobalIp>199.17.162.22</dpGlobalIp>
<dpConnectionStatus>1</dpConnectionStatus>
<dpLastConnectTime>2014-11-10T23:48:42.394Z</dpLastConnectTime>
<dpContact/>
<dpDescription/>
<dpLocation/>

AlarmStatusHistory

Digi Remote Manager Programmer Guide 65

<dpMapLat>44.932017</dpMapLat>
<dpMapLong>-93461594000000.000000</dpMapLong>
<dpServerId>ClientID[5]</dpServerId>
<dpZigbeeCapabilities>0</dpZigbeeCapabilities>
<dpCapabilities>68178</dpCapabilities>
<grpPath>/CUS0000002_Systems_Assurance/WSU/</grpPath>
<dpLastDisconnectTime>2014-11-

03T22:46:03.460Z</dpLastDisconnectTime>
<dpLastUpdateTime>2014-10-22T15:52:44.247Z</dpLastUpdateTime>
<dpHealthStatus>-1</dpHealthStatus>

</DeviceCore>
</Payload>

</almsPayload>
<almsSeverity>1</almsSeverity>

</AlarmStatusHistory>
<AlarmStatusHistory>

<id>
<almId>9219</almId>
<almsSourceEntityId>00000000-00000000-BBCCDDFF-

FF004000</almsSourceEntityId>
</id>
<almsStatus>1</almsStatus>
<almsTopic>Alarm.DeviceOffline</almsTopic>
<cstId>2</cstId>
<almsUpdateTime>2014-11-11T03:42:29.477Z</almsUpdateTime>
<almsPayload>

<Payload>
<DeviceCore>

<id>
<devId>317792</devId>
<devVersion>0</devVersion>

</id>
<devRecordStartDate>2014-08-13T17:41:00.000Z</devRecordStartDate>
<devMac>BB:CC:DD:00:40:00</devMac>
<devConnectwareId>00000000-00000000-BBCCDDFF-

FF004000</devConnectwareId>
<cstId>2</cstId>
<grpId>20686</grpId>
<devEffectiveStartDate>2014-08-

13T17:41:00.000Z</devEffectiveStartDate>
<devTerminated>false</devTerminated>
<dvVendorId>50331650</dvVendorId>
<dpDeviceType>Joshs Device</dpDeviceType>
<dpFirmwareLevel>16777216</dpFirmwareLevel>
<dpFirmwareLevelDesc>1.0.0.0</dpFirmwareLevelDesc>
<dpRestrictedStatus>0</dpRestrictedStatus>
<dpLastKnownIp>199.17.162.22</dpLastKnownIp>
<dpGlobalIp>199.17.162.22</dpGlobalIp>
<dpConnectionStatus>0</dpConnectionStatus>
<dpLastConnectTime>2014-11-10T23:48:42.393Z</dpLastConnectTime>
<dpContact/>
<dpDescription/>
<dpLocation/>
<dpMapLat>44.932017</dpMapLat>
<dpMapLong>-93461594000000.000000</dpMapLong>
<dpServerId/>
<dpZigbeeCapabilities>0</dpZigbeeCapabilities>
<dpCapabilities>68178</dpCapabilities>
<grpPath>/CUS0000002_Systems_Assurance/WSU/</grpPath>

AlarmStatusHistory

Digi Remote Manager Programmer Guide 66

<dpLastDisconnectTime>2014-11-
11T03:37:29.368Z</dpLastDisconnectTime>

<dpLastUpdateTime>2014-10-22T15:52:44.247Z</dpLastUpdateTime>
<dpHealthStatus>-1</dpHealthStatus>

</DeviceCore>
</Payload>

</almsPayload>
<almsSeverity>1</almsSeverity>

</AlarmStatusHistory>
<AlarmStatusHistory>

<id>
<almId>9219</almId>
<almsSourceEntityId>00000000-00000000-BBCCDDFF-

FF004000</almsSourceEntityId>
</id>
<almsStatus>0</almsStatus>
<almsTopic>Alarm.DeviceOffline</almsTopic>
<cstId>2</cstId>
<almsUpdateTime>2014-11-11T18:26:08.073Z</almsUpdateTime>
<almsPayload>

<Payload>
<DeviceCore>

<id>
<devId>317792</devId>
<devVersion>0</devVersion>

</id>
<devRecordStartDate>2014-08-13T17:41:00.000Z</devRecordStartDate>
<devMac>BB:CC:DD:00:40:00</devMac>
<devConnectwareId>00000000-00000000-BBCCDDFF-

FF004000</devConnectwareId>
<cstId>2</cstId>
<grpId>20686</grpId>
<devEffectiveStartDate>2014-08-

13T17:41:00.000Z</devEffectiveStartDate>
<devTerminated>false</devTerminated>
<dvVendorId>50331650</dvVendorId>
<dpDeviceType>Joshs Device</dpDeviceType>
<dpFirmwareLevel>16777216</dpFirmwareLevel>
<dpFirmwareLevelDesc>1.0.0.0</dpFirmwareLevelDesc>
<dpRestrictedStatus>0</dpRestrictedStatus>
<dpLastKnownIp>199.17.162.22</dpLastKnownIp>
<dpGlobalIp>199.17.162.22</dpGlobalIp>
<dpConnectionStatus>1</dpConnectionStatus>
<dpLastConnectTime>2014-11-11T18:26:07.903Z</dpLastConnectTime>
<dpContact/>
<dpDescription/>
<dpLocation/>
<dpMapLat>44.932017</dpMapLat>
<dpMapLong>-93461594000000.000000</dpMapLong>
<dpServerId>ClientID[4]</dpServerId>
<dpZigbeeCapabilities>0</dpZigbeeCapabilities>
<dpCapabilities>68178</dpCapabilities>
<grpPath>/CUS0000002_Systems_Assurance/WSU/</grpPath>
<dpLastDisconnectTime>2014-11-

11T03:37:29.367Z</dpLastDisconnectTime>
<dpLastUpdateTime>2014-10-22T15:52:44.247Z</dpLastUpdateTime>
<dpHealthStatus>-1</dpHealthStatus>

</DeviceCore>
</Payload>

AlarmStatusHistory

Digi Remote Manager Programmer Guide 67

</almsPayload>
<almsSeverity>1</almsSeverity>

</AlarmStatusHistory>
<AlarmStatusHistory>

<id>
<almId>9219</almId>
<almsSourceEntityId>00000000-00000000-BBCCDDFF-

FF004000</almsSourceEntityId>
</id>
<almsStatus>1</almsStatus>
<almsTopic>Alarm.DeviceOffline</almsTopic>
<cstId>2</cstId>
<almsUpdateTime>2014-11-11T19:04:15.977Z</almsUpdateTime>
<almsPayload>

<Payload>
<DeviceCore>

<id>
<devId>317792</devId>
<devVersion>0</devVersion>

</id>
<devRecordStartDate>2014-08-13T17:41:00.000Z</devRecordStartDate>
<devMac>BB:CC:DD:00:40:00</devMac>
<devConnectwareId>00000000-00000000-BBCCDDFF-

FF004000</devConnectwareId>
<cstId>2</cstId>
<grpId>20686</grpId>
<devEffectiveStartDate>2014-08-

13T17:41:00.000Z</devEffectiveStartDate>
<devTerminated>false</devTerminated>
<dvVendorId>50331650</dvVendorId>
<dpDeviceType>Joshs Device</dpDeviceType>
<dpFirmwareLevel>16777216</dpFirmwareLevel>
<dpFirmwareLevelDesc>1.0.0.0</dpFirmwareLevelDesc>
<dpRestrictedStatus>0</dpRestrictedStatus>
<dpLastKnownIp>199.17.162.22</dpLastKnownIp>
<dpGlobalIp>199.17.162.22</dpGlobalIp>
<dpConnectionStatus>0</dpConnectionStatus>
<dpLastConnectTime>2014-11-11T18:26:07.903Z</dpLastConnectTime>
<dpContact/>
<dpDescription/>
<dpLocation/>
<dpMapLat>44.932017</dpMapLat>
<dpMapLong>-93461594000000.000000</dpMapLong>
<dpServerId/>
<dpZigbeeCapabilities>0</dpZigbeeCapabilities>
<dpCapabilities>68178</dpCapabilities>
<grpPath>/CUS0000002_Systems_Assurance/WSU/</grpPath>
<dpLastDisconnectTime>2014-11-

11T18:59:15.868Z</dpLastDisconnectTime>
<dpLastUpdateTime>2014-10-22T15:52:44.247Z</dpLastUpdateTime>
<dpHealthStatus>-1</dpHealthStatus>

</DeviceCore>
</Payload>

</almsPayload>
<almsSeverity>1</almsSeverity>

</AlarmStatusHistory>
<AlarmStatusHistory>

<id>
<almId>9219</almId>

AlarmStatusHistory

Digi Remote Manager Programmer Guide 68

<almsSourceEntityId>00000000-00000000-BBCCDDFF-
FF004000</almsSourceEntityId>

</id>
<almsStatus>0</almsStatus>
<almsTopic>Alarm.DeviceOffline</almsTopic>
<cstId>2</cstId>
<almsUpdateTime>2014-11-11T23:43:52.707Z</almsUpdateTime>
<almsPayload>

<Payload>
<DeviceCore>

<id>
<devId>317792</devId>
<devVersion>0</devVersion>

</id>
<devRecordStartDate>2014-08-13T17:41:00.000Z</devRecordStartDate>
<devMac>BB:CC:DD:00:40:00</devMac>
<devConnectwareId>00000000-00000000-BBCCDDFF-

FF004000</devConnectwareId>
<cstId>2</cstId>
<grpId>20686</grpId>
<devEffectiveStartDate>2014-08-

13T17:41:00.000Z</devEffectiveStartDate>
<devTerminated>false</devTerminated>
<dvVendorId>50331650</dvVendorId>
<dpDeviceType>Joshs Device</dpDeviceType>
<dpFirmwareLevel>16777216</dpFirmwareLevel>
<dpFirmwareLevelDesc>1.0.0.0</dpFirmwareLevelDesc>
<dpRestrictedStatus>0</dpRestrictedStatus>
<dpLastKnownIp>199.17.162.22</dpLastKnownIp>
<dpGlobalIp>199.17.162.22</dpGlobalIp>
<dpConnectionStatus>1</dpConnectionStatus>
<dpLastConnectTime>2014-11-11T23:43:52.632Z</dpLastConnectTime>
<dpContact/>
<dpDescription/>
<dpLocation/>
<dpMapLat>44.932017</dpMapLat>
<dpMapLong>-93461594000000.000000</dpMapLong>
<dpServerId>ClientID[4]</dpServerId>
<dpZigbeeCapabilities>0</dpZigbeeCapabilities>
<dpCapabilities>68178</dpCapabilities>
<grpPath>/CUS0000002_Systems_Assurance/WSU/</grpPath>
<dpLastDisconnectTime>2014-11-

11T18:59:15.867Z</dpLastDisconnectTime>
<dpLastUpdateTime>2014-10-22T15:52:44.247Z</dpLastUpdateTime>
<dpHealthStatus>-1</dpHealthStatus>

</DeviceCore>
</Payload>

</almsPayload>
<almsSeverity>1</almsSeverity>

</AlarmStatusHistory>
<AlarmStatusHistory>

<id>
<almId>9219</almId>
<almsSourceEntityId>00000000-00000000-BBCCDDFF-

FF004000</almsSourceEntityId>
</id>
<almsStatus>1</almsStatus>
<almsTopic>Alarm.DeviceOffline</almsTopic>
<cstId>2</cstId>

AlarmStatusHistory

Digi Remote Manager Programmer Guide 69

<almsUpdateTime>2014-11-11T23:56:33.677Z</almsUpdateTime>
<almsPayload>

<Payload>
<DeviceCore>

<id>
<devId>317792</devId>
<devVersion>0</devVersion>

</id>
<devRecordStartDate>2014-08-13T17:41:00.000Z</devRecordStartDate>
<devMac>BB:CC:DD:00:40:00</devMac>
<devConnectwareId>00000000-00000000-BBCCDDFF-

FF004000</devConnectwareId>
<cstId>2</cstId>
<grpId>20686</grpId>
<devEffectiveStartDate>2014-08-

13T17:41:00.000Z</devEffectiveStartDate>
<devTerminated>false</devTerminated>
<dvVendorId>50331650</dvVendorId>
<dpDeviceType>Joshs Device</dpDeviceType>
<dpFirmwareLevel>16777216</dpFirmwareLevel>
<dpFirmwareLevelDesc>1.0.0.0</dpFirmwareLevelDesc>
<dpRestrictedStatus>0</dpRestrictedStatus>
<dpLastKnownIp>199.17.162.22</dpLastKnownIp>
<dpGlobalIp>199.17.162.22</dpGlobalIp>
<dpConnectionStatus>0</dpConnectionStatus>
<dpLastConnectTime>2014-11-11T23:43:52.633Z</dpLastConnectTime>
<dpContact/>
<dpDescription/>
<dpLocation/>
<dpMapLat>44.932017</dpMapLat>
<dpMapLong>-93461594000000.000000</dpMapLong>
<dpServerId/>
<dpZigbeeCapabilities>0</dpZigbeeCapabilities>
<dpCapabilities>68178</dpCapabilities>
<grpPath>/CUS0000002_Systems_Assurance/WSU/</grpPath>
<dpLastDisconnectTime>2014-11-

11T23:51:33.617Z</dpLastDisconnectTime>
<dpLastUpdateTime>2014-10-22T15:52:44.247Z</dpLastUpdateTime>
<dpHealthStatus>-1</dpHealthStatus>

</DeviceCore>
</Payload>

</almsPayload>
<almsSeverity>1</almsSeverity>

</AlarmStatusHistory>

AlarmTemplate

Digi Remote Manager Programmer Guide 70

AlarmTemplate
Use the AlarmTemplate web service to retrieve information about available alarm types within
your Remote Manager host.

URI
http://<hostname>/ws/AlarmTemplate

Formats

HTTP method Format Description

GET /ws/AlarmTemplate Get a list of
all available
alarm
templates.

Elements

almtID
System-generated identifier for an alarm template. To get a list of available alarm template, use the
AlarmTemplate web service.

almtName
Name of the alarm template.

almtDescription
Description of the alarm template.

grpId
Remote Manager identifier for the customer group.

almtTopic
Topic for the alarm template.

almtScopeOptions
Specifies the resource scope for the alarm template. Scope options include:

Scope Description

Group Applies the alarm to the specified group indicated by the full group path.

AlarmTemplate

Digi Remote Manager Programmer Guide 71

Scope Description

Device Applies the alarm to the specified device. For example, 00000000-00000000-00000000-
00000000.

XbeeNode Applies the alarm to the specified XbeeNode, expressed as the XbeeNode extended
address. For example, 00:13:A2:00:00:00:00:00.

Resource Applies the alarm to a data stream path or pattern. You can use the wildcard charater
asterisk (*) to match any element in the data stream path. For example,
dia/channel/*/lth/temp matches all the lth temperature reading for all devices.

Global Applies the alarm at the customer level to monitor all instances of an entity. For
example, you can create an alarm to monitor the total number of web services calls for
your account. This option is available for subscription usage alarms only.

See almtScopeOptions for the required XML structure for almtScopeOptions.

almtRules
Specifies the rule configurations for the alarm template:

Rule configuration Description

FireRule A list of variables that specify the condition for firing the alarm.

ResetRule A list of variables that specify the condition for resetting the alarm.

See almtRules for the required XML structure for almtRules.
See Alarm template types for a list of available fire and reset variables for each alarm template type.

AlarmTemplate

Digi Remote Manager Programmer Guide 72

Alarm template types
The following table lists and describes all available alarm template types.

Alarm
template
type Description

Scoping
Options Fire variables Reset variables

Device offline Detects when a
device disconnects
from Remote
Manager and fails to
reconnect withint the
specified time.

Device
Group

reconnectWindowDuration none

XBeeNode
offline

Detects when an
XBee node
disconnects from
Remote Manager and
fails to reconnect
within the specified
time.

Device
Group
XBeeNode

reconnectWindowDuration none

Device
excessive
disconnects

Detects devices with
an excessive number
of disconnects.

Device
Group

disconnectCount
disconnectWindow

reconnectWindow

XBeeNode
excessive
deactivations

Detects XBee nodes
with an excessive
number of
deactivations.

Device
Group
XBeeNode

deactivationCount
deactivationWindow

activationWindow

DIA channel
data point
condition
watch

Detects when the
specified DIA channel
conditions are met.

Device
Group

instanceName
channelName
type
operator
thresholdValue
timeout
timeUnit

instanceName
channelName
type
operator
thresholdValue
timeout
timeUnit

Smart
energy data
point
condition
match

Detects when the
specified DIA channel
conditions are met.

Device
Group
XBeeNode

endpointID
clusterType
clusterID
attributeID
type
operator
thresholdValue
timeout
timeUnit

endpointID
clusterType
clusterID
attributeID
type
operator
thresholdValue
timeout
timeUnit

AlarmTemplate

Digi Remote Manager Programmer Guide 73

Alarm
template
type Description

Scoping
Options Fire variables Reset variables

Data point
condition
match

Detects when the
specified data point
usage conditions are
met.

Resource type
operator
thresholdValue
timeout
timeUnit

type
operator
thresholdValue
timeout
timeUnit

Subscription
usage

Detects when
subscription usage
exceeds a specified
threshold.

Device
Group
Global

svcID
thresholdValue
metric
unit

none

Missing data
point

Detects when one or
more data points are
not reported on
within the specified
time.

Resource uploadInterval
uploadTimeUnit
readingInterval
readingTimeUnit

none

Missing DIA
channel data
point

Detects when
devices haven not
reported DIA channel
data within the
specified time.

Note The alarm will
not be registered
until the first data
point is sent after the
alarm is created or
edited.

Device
Group

instanceName
channelName
uploadInterval
uploadTimeUnit
readingInterval
readingTimeUnit

none

Missing
smart energy
data point

Detects when
devices have not
reported smart
energy data within
the specifed time.

Note The alarm will
not be registered
until the first data
point is sent after the
alarm is created or
edited.

Device
Group
XBeeNode

endpointID
clusterType
clusterID
attributedID
uploadInterval
uploadTimeUnit
readingInterval
readingTimeUnit

none

AlarmTemplate

Digi Remote Manager Programmer Guide 74

almtScopeOptions
Use the following XML structure for almtScopeOptions.

<almScopeConfig>
<ScopingOptions>

<Scope name="Resource" value="Weather/USA/*/Minneapolis"/>
</ScopingOptions>

</almScopeConfig>

AlarmTemplate

Digi Remote Manager Programmer Guide 75

almtRules
Use the following structure for almtRules.

<almRuleConfig>
<Rules>

<FireRule>
<Variable name="variableName" value="value"/>
...
</FireRule>
<ResetRule>
<Variable name="variableName" value="value"/>
...
</ResetRule>

</Rules>
</almRuleConfig>

AlarmTemplate

Digi Remote Manager Programmer Guide 76

Example: List all alarm templates
The following sample request retrieves a list of all alarm templates for your Remote Manager host.

Request

GET ws/AlarmTemplate

Response

Header

<?xml version="1.0" encoding="ISO-8859-1"?>
<result>

<resultTotalRows>11</resultTotalRows>
<requestedStartRow>0</requestedStartRow>
<resultSize>11</resultSize>
<requestedSize>1000</requestedSize>
<remainingSize>0</remainingSize>

Alarm template ID 2: Device offline

<AlarmTemplate>
<almtId>2</almtId>
<almtName>Device Offline</almtName>
<almtDescription>Detects when a device disconnects from Remote Manager and

fails to reconnected</almtDescription>
<grpId>1</grpId>
<almtTopic>Alarm.DeviceOffline</almtTopic>
<almtScopeOptions>
<ScopingOptions>
<Scope name="Group"/>
<Scope name="Device"/>

</ScopingOptions>
</almtScopeOptions>
<almtRules>
<Rules>
<FireRule name="fireRule1">
<Variable name="reconnectWindowDuration" type="int"/>

</FireRule>
<ResetRule name="resetRule1">
</ResetRule>

</Rules>
</almtRules>
<almtResourceList>DeviceCore,AlarmStatus</almtResourceList>

</AlarmTemplate>

Alarm template ID 3: XBeeNode offline

<AlarmTemplate>
<almtId>3</almtId>
<almtName>XBeeNode Offline</almtName>
<almtDescription>Detects when an XBee Node disconnects from Remote Manager

and fails to reconnect</almtDescription>
<grpId>1</grpId>

AlarmTemplate

Digi Remote Manager Programmer Guide 77

<almtTopic>Alarm.XBeeNodeOffline</almtTopic>
<almtScopeOptions>
<ScopingOptions>
<Scope name="Group"/>
<Scope name="Device"/>
<Scope name="XbeeNode"/>

</ScopingOptions>
</almtScopeOptions>
<almtRules>
<Rules>
<FireRule name="fireRule1">
<Variable name="reconnectWindowDuration" type="int"/>

</FireRule>
<ResetRule name="resetRule1">
</ResetRule>

</Rules>
</almtRules>
<almtResourceList>XbeeCore,AlarmStatus</almtResourceList>

</AlarmTemplate>

Alarm template ID 4: Device excessive disconnects

<AlarmTemplate>
<almtId>4</almtId>
<almtName>Device Excessive Disconnects</almtName>
<almtDescription>Detects devices with an excessive number of

disconnects.</almtDescription>
<grpId>1</grpId>
<almtTopic>Alarm.DeviceExcessiveDisconnect</almtTopic>
<almtScopeOptions>
<ScopingOptions>
<Scope name="Group"/>
<Scope name="Device"/>

</ScopingOptions>
</almtScopeOptions>
<almtRules>
<Rules>
<FireRule name="fireRule1">
<Variable name="disconnectCount" type="int"/>
<Variable name="disconnectWindow" type="int"/>

</FireRule>
<ResetRule name="resetRule1">
<Variable name="reconnectWindow" type="int"/>

</ResetRule>
</Rules>

</almtRules>
<almtResourceList>DeviceCore,AlarmStatus</almtResourceList>

</AlarmTemplate>

Alarm template ID 5: XBeeNode excessive deactivations

<AlarmTemplate>
<almtId>5</almtId>
<almtName>XBeeNode Excessive Deactivations</almtName>
<almtDescription>Detects XBeeNodes with an excessive number of

deactivations.</almtDescription>
<grpId>1</grpId>
<almtTopic>Alarm.XBeeNodeExcessiveDeactivation</almtTopic>

AlarmTemplate

Digi Remote Manager Programmer Guide 78

<almtScopeOptions>
<ScopingOptions>
<Scope name="Group"/>
<Scope name="Device"/>
<Scope name="XbeeNode"/>

</ScopingOptions>
</almtScopeOptions>
<almtRules>
<Rules>
<FireRule name="fireRule1">
<Variable name="deactivationCount" type="int"/>
<Variable name="deactivationWindow" type="int"/>

</FireRule>
<ResetRule name="resetRule1">
<Variable name="activationWindow" type="int"/>

</ResetRule>
</Rules>

</almtRules>
<almtResourceList>XbeeCore,AlarmStatus</almtResourceList>

</AlarmTemplate>

Alarm template ID 6: DIA channel data point condition match

<AlarmTemplate>
<almtId>6</almtId>
<almtName>Dia channel data point condition match</almtName>
<almtDescription>Detects dia channel condition</almtDescription>
<grpId>1</grpId>
<almtTopic>Alarm.DiaChannelDataPoint</almtTopic>
<almtScopeOptions>
<ScopingOptions>
<Scope name="Group"/>
<Scope name="Device"/>

</ScopingOptions>
</almtScopeOptions>
<almtRules>
<Rules>
<FireRule name="fireRule1">
<Variable name="instanceName" type="string"/>
<Variable name="channelName" type="string"/>
<Variable name="type" type="enum">
<Value desc="Numeric" value="numeric"/>
<Value desc="String" value="string"/>

</Variable>
<Variable name="operator" type="enum">
<Value desc=">" value=">"/>
<Value desc=">=" value=">="/>
<Value desc="<" value="<"/>
<Value desc="<=" value="<="/>
<Value desc="=" value="="/>
<Value desc="!=" value="<>"/>

</Variable>
<Variable name="thresholdValue" type="string"/>
<Variable name="timeout" type="int"/>
<Variable name="timeUnit" type="enum">
<Value desc="Seconds" value="seconds"/>
<Value desc="Minutes" value="minutes"/>
<Value desc="Hours" value="hours"/>

AlarmTemplate

Digi Remote Manager Programmer Guide 79

</Variable>
</FireRule>
<ResetRule name="resetRule1">
<Variable name="instanceName" type="string"/>
<Variable name="channelName" type="string"/>
<Variable name="type" type="enum">
<Value desc="Numeric" value="numeric"/>
<Value desc="String" value="string"/>

</Variable>
<Variable name="operator" type="enum">
<Value desc=">" value=">"/>
<Value desc=">=" value=">="/>
<Value desc="<" value="<"/>
<Value desc="<=" value="<="/>
<Value desc="=" value="="/>
<Value desc="!=" value="<>"/>

</Variable>
<Variable name="thresholdValue" type="string"/>
<Variable name="timeout" type="int"/>
<Variable name="timeUnit" type="enum">
<Value desc="Seconds" value="seconds"/>
<Value desc="Minutes" value="minutes"/>
<Value desc="Hours" value="hours"/>

</Variable>
</ResetRule>

</Rules>
</almtRules>
<almtResourceList>DataPoint,AlarmStatus</almtResourceList>

</AlarmTemplate>

Alarm template ID 7: Smart energy data point condition match

<AlarmTemplate>
<almtId>7</almtId>
<almtName>Smart energy data point condition match</almtName>
<almtDescription>Detects smart energy data point condition</almtDescription>
<grpId>1</grpId>
<almtTopic>Alarm.XbeeAttributeDataPoint</almtTopic>
<almtScopeOptions>
<ScopingOptions>
<Scope name="Group"/>
<Scope name="Device"/>
<Scope name="XbeeNode"/>

</ScopingOptions>
</almtScopeOptions>
<almtRules>
<Rules>
<FireRule name="fireRule1">
<Variable name="endpointId" type="string"/>
<Variable name="clusterType" type="string"/>
<Variable name="clusterId" type="string"/>
<Variable name="attributeId" type="string"/>
<Variable name="type" type="enum">
<Value desc="Numeric" value="numeric"/>
<Value desc="String" value="string"/>

</Variable>
<Variable name="operator" type="enum">
<Value desc=">" value=">"/>

AlarmTemplate

Digi Remote Manager Programmer Guide 80

<Value desc=">=" value=">="/>
<Value desc="<" value="<"/>
<Value desc="<=" value="<="/>
<Value desc="=" value="="/>
<Value desc="!=" value="<>"/>

</Variable>
<Variable name="thresholdValue" type="string"/>
<Variable name="timeout" type="int"/>
<Variable name="timeUnit" type="enum">
<Value desc="Seconds" value="seconds"/>
<Value desc="Minutes" value="minutes"/>
<Value desc="Hours" value="hours"/>

</Variable>
</FireRule>
<ResetRule name="resetRule1">
<Variable name="endpointId" type="string"/>
<Variable name="clusterType" type="string"/>
<Variable name="clusterId" type="string"/>
<Variable name="attributeId" type="string"/>
<Variable name="type" type="enum">
<Value desc="Numeric" value="numeric"/>
<Value desc="String" value="string"/>

</Variable>
<Variable name="operator" type="enum">
<Value desc=">" value=">"/>
<Value desc=">=" value=">="/>
<Value desc="<" value="<"/>
<Value desc="<=" value="<="/>
<Value desc="=" value="="/>
<Value desc="!=" value="<>"/>

</Variable>
<Variable name="thresholdValue" type="string"/>
<Variable name="timeout" type="int"/>
<Variable name="timeUnit" type="enum">
<Value desc="Seconds" value="seconds"/>
<Value desc="Minutes" value="minutes"/>
<Value desc="Hours" value="hours"/>

</Variable>
</ResetRule>

</Rules>
</almtRules>
<almtResourceList>DataPoint,AlarmStatus</almtResourceList>

</AlarmTemplate>

Alarm template ID 8: Subscription usage

<AlarmTemplate>
<almtId>8</almtId>
<almtName>Subscription Usage</almtName>
<almtDescription>Fires when subscription usage exceeds a certain

threshold</almtDescription>
<grpId>1</grpId>
<almtTopic>Alarm.SubscriptionUsage</almtTopic>
<almtScopeOptions>
<ScopingOptions>
<Scope name="Group"/>
<Scope name="Global"/>
<Scope name="Device"/>

AlarmTemplate

Digi Remote Manager Programmer Guide 81

</ScopingOptions>
</almtScopeOptions>
<almtRules>
<Rules>
<FireRule name="fireRule1" uiView="SubscriptionFireRule">
<Variable name="svcId" type="int"/>
<Variable name="thresholdValue" type="numeric"/>
<Variable name="metric" type="string"/>
<Variable name="unit" type="string"/>

</FireRule>
<ResetRule name="resetRule1">
</ResetRule>

</Rules>
</almtRules>
<almtResourceList>SubscriptionUseCore,AlarmStatus</almtResourceList>

</AlarmTemplate>

Alarm template ID 9: Data point condition

<AlarmTemplate>
<almtId>9</almtId>
<almtName>DataPoint condition</almtName>
<almtDescription>Fires when data point usage conditions given below is

met</almtDescription>
<grpId>1</grpId>
<almtTopic>Alarm.DataPointConditionMatch</almtTopic>
<almtScopeOptions>
<ScopingOptions>
<Scope name="Resource"/>

</ScopingOptions>
</almtScopeOptions>
<almtRules>
<Rules>
<FireRule name="fireRule1">
<Variable name="type" type="enum">
<Value desc="Numeric" value="numeric"/>
<Value desc="String" value="string"/>

</Variable>
<Variable name="operator" type="enum">
<Value desc=">" value=">"/>
<Value desc=">=" value=">="/>
<Value desc="<" value="<"/>
<Value desc="<=" value="<="/>
<Value desc="=" value="="/>
<Value desc="!=" value="<>"/>

</Variable>
<Variable name="thresholdValue" type="string"/>
<Variable name="timeout" type="int"/>
<Variable name="timeUnit" type="enum">
<Value desc="Seconds" value="seconds"/>
<Value desc="Minutes" value="minutes"/>
<Value desc="Hours" value="hours"/>

</Variable>
</FireRule>
<ResetRule name="resetRule1">
<Variable name="type" type="enum">
<Value desc="Numeric" value="numeric"/>
<Value desc="String" value="string"/>

AlarmTemplate

Digi Remote Manager Programmer Guide 82

</Variable>
<Variable name="operator" type="enum">
<Value desc=">" value=">"/>
<Value desc=">=" value=">="/>
<Value desc="<" value="<"/>
<Value desc="<=" value="<="/>
<Value desc="=" value="="/>
<Value desc="!=" value="<>"/>

</Variable>
<Variable name="thresholdValue" type="string"/>
<Variable name="timeout" type="int"/>
<Variable name="timeUnit" type="enum">
<Value desc="Seconds" value="seconds"/>
<Value desc="Minutes" value="minutes"/>
<Value desc="Hours" value="hours"/>

</Variable>
</ResetRule>

</Rules>
</almtRules>
<almtResourceList>DataPoint,AlarmStatus</almtResourceList>

</AlarmTemplate>

Alarm template ID 10: Missing data point

<AlarmTemplate>
<almtId>10</almtId>
<almtName>Missing DataPoint</almtName>
<almtDescription>Fires when a data points are not reported within the

specified time</almtDescription>
<grpId>1</grpId>
<almtTopic>Alarm.MissingDataPoint</almtTopic>
<almtScopeOptions>
<ScopingOptions>
<Scope name="Resource"/>

</ScopingOptions>
</almtScopeOptions>
<almtRules>
<Rules>
<Description>Note: Alarm will not be registered until the first DataPoint

is sent after the Alarm is created or edited.</Description>
<FireRule name="fireRule1">
<Variable name="uploadInterval" type="int"/>
<Variable name="uploadTimeUnit" type="enum">
<Value desc="Minutes" value="minutes"/>
<Value desc="Hours" value="hours"/>

</Variable>
<Variable name="readingInterval" type="int"/>
<Variable name="readingTimeUnit" type="enum">
<Value desc="Seconds" value="seconds"/>
<Value desc="Minutes" value="minutes"/>
<Value desc="Hours" value="hours"/>

</Variable>
</FireRule>
<ResetRule name="resetRule1">
</ResetRule>

</Rules>
</almtRules>

AlarmTemplate

Digi Remote Manager Programmer Guide 83

<almtResourceList>DataPoint,AlarmStatus</almtResourceList>
</AlarmTemplate>

Alarm template ID 11: Missing DIA channel data point

<AlarmTemplate>
<almtId>11</almtId>
<almtName>Missing DiaChannel DataPoint</almtName>
<almtDescription>Fires when devices have not reported DIA channel data within

the specified time</almtDescription>
<grpId>1</grpId>
<almtTopic>Alarm.MissingDiaChannelDataPoint</almtTopic>
<almtScopeOptions>
<ScopingOptions>
<Scope name="Group"/>
<Scope name="Device"/>

</ScopingOptions>
</almtScopeOptions>
<almtRules>
<Rules>
<Description>Note: Alarm will not be registered until the first DataPoint

is sent after the Alarm is created or edited.</Description>
<FireRule name="fireRule1">
<Variable name="instanceName" type="string"/>
<Variable name="channelName" type="string"/>
<Variable name="uploadInterval" type="int"/>
<Variable name="uploadTimeUnit" type="enum">
<Value desc="Minutes" value="minutes"/>
<Value desc="Hours" value="hours"/>

</Variable>
<Variable name="readingInterval" type="int"/>
<Variable name="readingTimeUnit" type="enum">
<Value desc="Seconds" value="seconds"/>
<Value desc="Minutes" value="minutes"/>
<Value desc="Hours" value="hours"/>

</Variable>
</FireRule>
<ResetRule name="resetRule1">
</ResetRule>

</Rules>
</almtRules>
<almtResourceList>DataPoint,AlarmStatus</almtResourceList>

</AlarmTemplate>

Alarm template ID 12: Missing smart energy data point

<AlarmTemplate>
<almtId>12</almtId>
<almtName>Missing Smart Energy DataPoint</almtName>
<almtDescription>Fires when devices have not reported Smart Energy data

within the specified time</almtDescription>
<grpId>1</grpId>
<almtTopic>Alarm.MissingSmartEnergyDataPoint</almtTopic>
<almtScopeOptions>
<ScopingOptions>
<Scope name="Group"/>
<Scope name="Device"/>
<Scope name="XbeeNode"/>

AlarmTemplate

Digi Remote Manager Programmer Guide 84

</ScopingOptions>
</almtScopeOptions>
<almtRules>
<Rules>
<Description>Note: Alarm will not be registered until the first DataPoint

is sent after the Alarm is created or edited.</Description>
<FireRule name="fireRule1">
<Variable name="endpointId" type="string"/>
<Variable name="clusterType" type="string"/>
<Variable name="clusterId" type="string"/>
<Variable name="attributeId" type="string"/>
<Variable name="uploadInterval" type="int"/>
<Variable name="uploadTimeUnit" type="enum">
<Value desc="Minutes" value="minutes"/>
<Value desc="Hours" value="hours"/>

</Variable>
<Variable name="readingInterval" type="int"/>
<Variable name="readingTimeUnit" type="enum">
<Value desc="Seconds" value="seconds"/>
<Value desc="Minutes" value="minutes"/>
<Value desc="Hours" value="hours"/>

</Variable>
</FireRule>
<ResetRule name="resetRule1">
</ResetRule>

</Rules>
</almtRules>
<almtResourceList>DataPoint,AlarmStatus</almtResourceList>

</AlarmTemplate>

CarrierAuth

Digi Remote Manager Programmer Guide 85

CarrierAuth
Use the CarrierAuth web service to get, configure, modify, or delete carrier account credentials.

URI
http://<hostname>/ws/CarrierAuth

Formats

HTTP method Format Description

GET /ws/CarrierAuth Get a list of
all configured
carrier
accounts.

Note
Password
information
is not
returned.

POST /ws/CarrierAuth Configure
authorization
information
for a carrier
account.

PUT /ws/CarrierAuth/{caId} Update
carrier
authorization
information
for an
existing
carrier
account.

DELETE /ws/CarrierAuth/{caId} Delete
carrier
authorization
information
for a carrier
account.

CarrierAuth

Digi Remote Manager Programmer Guide 86

Elements

caId
Identifier associated with a specific carrier authentication. A unique identifier is returned for each
CarrierAuth request.

cstId
Remote Manager identifier for the customer.

prvName
Cellular service provider name. Options include: ATT, DeutscheTelekom, Rogers, Telefonica, Verizon, or
Vodafone.

caUserName
Username associated with the carrier account. This is the username provided by your business
account carrier that you used to set up the carrier account within Remote Manager.

caPassword
Password for the cellular service account. This password was provided by your business account
carrier.

caUpdateTime
Date and time in ISO 8601 format when your carrier account information was last updated.

caLicenseKey1
Admintrator license key required for AT&T, Rogers, and Telefonica.

Example: Get a list of carrier accounts
The following example shows how to get a list of configured carrier accounts for your Remote
Manager account.

Note Password information is not retured.

Request

GET ws/CarrierAuth

Response

<?xml version="1.0" encoding="ISO-8859-1"?>
<result>
<resultTotalRows>2</resultTotalRows>
<requestedStartRow>0</requestedStartRow>
<resultSize>2</resultSize>
<requestedSize>1000</requestedSize>

CarrierAuth

Digi Remote Manager Programmer Guide 87

<remainingSize>0</remainingSize>
<CarrierAuth>
<caId>2</caId>
<cstId>3</cstId>
<prvName>ATT</prvName> <!-- carrier account

#1 -->
<caUserName>exampleUser</caUserName>
<caUpdateTime>2012-10-15T15:17:00.000Z</caUpdateTime>

</CarrierAuth>
<CarrierAuth>
<caId>67</caId>
<cstId>3</cstId>
<prvName>Vodafone</prvName> <!-- carrier account

#2 -->
<caUserName>exampleUser</caUserName>
<caUpdateTime>2012-10-31T18:55:00.000Z</caUpdateTime>

</CarrierAuth>
</result>

CarrierAuth

Digi Remote Manager Programmer Guide 88

Example: Configure carrier account credentials
The following example shows how to configure credentials for an AT&T account.

POST /ws/CarrierAuth

<CarrierAuth>
<prvName>ATT</prvName>
<caUserName>ExampleUser</caUserName>
<caPassword>123</caPassword>
<caLicenseKey1>123</caLicenseKey1>

</CarrierAuth>

CarrierAuth

Digi Remote Manager Programmer Guide 89

Example: Update a carrier account
The following example shows how to insert a caId element in an existing AT&T account.

PUT /ws/CarrierAuth

<CarrierAuth>
<caId>7</caId>
<prvName>ATT</prvName>
<caUserName>exampleUser</caUserName>
<caPassword>123</caPassword>
<caLicenseKey1>123</caLicenseKey1>

</CarrierAuth>

CarrierAuth

Digi Remote Manager Programmer Guide 90

Example: Delete a carrier account
The following example shows how to delete a carrier account.

DELETE ws/CarrierAuth/{subscription_id}

Replace subscription_id with the subscription ID of the account you want to delete.

DataPoint

Digi Remote Manager Programmer Guide 91

DataPoint
Note The DataPoint API is a pre-version 1 API used to get, create, modify, or delete data points. Data
points created by the API are supported. However, when creating new data streams, use the
v1/streams API.

The DataPoint web service lists, creates, or deletes data points within a data stream.

URI
http://<hostname>/ws/DataPoint

Formats

Method Format Description

GET /ws/DataPoint/{streamId} List all data
points for a
data
stream.

POST /ws/DataPoint/{streamId} Create one
or more
data points
in a data
stream.

DELETE /ws/DataPoint/{streamId} Delete an
existing
data point
within a
data
stream.

Elements

id
Identifier for the data point.

cstId
Remote Manager identifier for the customer.

streamId
Full path for the stream that contains the data points. Typically this is the data stream that the data
point belongs to, but if you are using replication (forwardTo) it may be different.

DataPoint

Digi Remote Manager Programmer Guide 92

timestamp
Client-assigned timestamp. If there is no client-assigned timestamp, the serverTimestamp value is
used.

serverTimestamp
Server-assigned timestamp that indicates when the data point was stored on the server. Not writable
by the client.

data
Data value for the data point.

description
Description of the data.

quality
User-defined 32-bit integer value representing the quality of the data in the data point.

location
Geo-location information associated with the data point which indicates the location when the data
point was recorded. Geo-location is represented as a comma-delimited list of floats in order of lat,
long, elevation (degrees, degrees, meters).

dataType
Type of data stored in the data stream.

n Integer: data can be represented with a network (= big-endian) 32-bit two's-complement
integer

n Long: data can be represented with a network (= big-endian) 64-bit two's complement integer
n Float: data can be represented with a network (= big-endian) 32-bit IEEE754 floating point
n Double: data can be represented with a network (= big-endian) 64-bit IEEE754 floating point
n String: UTF-8
n Binary
n Unknown

units
User-defined name for the units in which data is reported.

forwardTo
Comma-delimited list of data streams to which to forward the data points.

DataPoint

Digi Remote Manager Programmer Guide 93

Parameters

Name Type Description

startTime timestamp Start time (inclusive) in ISO 8601 or epoch (long).

endTime timestamp End time (exclusive) in ISO 8601 or epoch (long).

timeline string Timestamps to use in the request: client or server. The
default is client.

pageCursor string Cursor to get the next page of devices. Omit on initial call.

size integer Number of items to return. The maximum and default is
1000.

order string Return streams ordered by ID (asc | desc). The default is
ascending (asc).

timezone string Timezone in which to calculate rollups. Applies only to
rollups with intervals of day or longer.

rollupInterval string Rollup interval: half, hour, day, week, or month. The default
is hour.

rollupMethod string Rollup method: sum, average, min, max, count, or
standarddev. The default is average.

Direct device uploads
Devices can upload directly to data streams over any of the existing transports (TCP, UDP, SMS, and
Satellite). The path specified in the data service message begins with DataPoint and the rest of the
message is mapped to a data stream appended to the device ID.
For example, if the device sends a data point file specifying the filename DataPoint/temp1, the data
point is added to the data stream <device-id>/temp1. The file must follow one of the expected
formats and must specify the format via the file extension. The following types are supported for a
given extension:

Format Extension Description

XML .xml XML representation same as the /ws/DataPoint interface.

CSV .csv Comma separated list. One data point per line with details separated by
commas.

Binary .bin Whatever the content of the uploaded data is directly inserted to a single data
point.

Data limits related to direct device uploads
To maximize the speed and throughput of Remote Manager, limitations have been imposed on device
uploads.

DataPoint

Digi Remote Manager Programmer Guide 94

n Maximum number of data points allowed per request: 250
n Maximum size of Send Data requests: 2MB
n Maximum size of replies to Device Requests: 2MB
n Maximum number of binary data points allowed: 64KB

Note The Description field for a data point does not display in the Remote Manager UI Data Streams
view.

When devices push data points up to Remote Manager, the description included refers to the data
point, not the data stream. To view the description, you must retrieve data point via web services.

XML
XML format uses the same format used in /ws/DataPoint PUT. The stream id is ignored since it is
provided by the path. Also, any streams listed in the forwardTo field will be normalized to the device's
stream. This is done to prevent one device from uploading data into another device's stream.

<DataPoint>
<data>42</data>
<!-- Everything below this is optional -->
<description>Temperature at device 1</description>
<location>0.0, 0.0, 0.0</location>
<quality>99</quality>
<dataType>float</dataType>
<units>Kelvin</units>

</DataPoint>

For multiple data points in one message:

<list>
<DataPoint>
<data>42</data>
<timestamp>1234566</timestamp>

</DataPoint>
<DataPoint>
<data>43</data>

</DataPoint>
</list>

CSV
An optional upload format is to specify the data in UTF-8 encoded comma separated values. Each line
('\n' terminated) specifies a data point. The default order is:

DATA, TIMESTAMP, QUALITY, DESCRIPTION, LOCATION, DATATYPE, UNITS, FORWARDTO

Meaning the following file:

data, 1,99,"my description",,INTEGER,kelvins,"stream1,stream2"
data2,2,50,"my description"
data3,3,25,"my description"

Would create 3 data points, set the stream's units/type to kelvins/Integers, and have the data points
with the data "data", "data2", and "data3", using the epoch timestamps of 1, 2, and 3.
Note that location was omitted in the above example. You can omit values by leaving them empty or
stopping before the end. For example:

DataPoint

Digi Remote Manager Programmer Guide 95

Empty values:data,1,,,99
Ending early:data,1
Order can be overridden. You can define a header on the first line by starting it with a '#' character, for
example:

#TIMESTAMP,DATA
1, data
2, data2
3, data3

Will create 3 data points 1ms apart starting at epoch (1970).
Multiple datapoints for multiple streams from a device can be inserted in one message using the
STREAMID value. When the STREAMID value is specified, the file name is no longer used for the stream
name.
For example:

#STREAMID,DATA,TIMESTAMP
sensor1/port1,97,1
sensor1/port2,98,1
sensor2/port1,42,1
sensor2/port2,0,2

Will create 4 data points, one in each of 4 separate streams for the device. The first 3 data points are
at 1ms after the epoch (1970) and the final data point is 1ms later.
The XML version is as follows:

<list>
<DataPoint><streamId>sensor1/port1</streamId><data>97</data><timestamp>1</timesta
mp></DataPoint>
<DataPoint><streamId>sensor1/port2</streamId><data>98</data><timestamp>1</timesta
mp></DataPoint>
<DataPoint><streamId>sensor2/port1</streamId><data>42</data><timestamp>1</timesta
mp></DataPoint>
<DataPoint><streamId>sensor2/port2</streamId><data>0</data><timestamp>2</timestam
p></DataPoint>
</list>

Binary Concise Alternative Format
The disadvantage to using the XML format is that it is very verbose. This binary alternative format can
be used to be more concise. You can specify a simple value instead of XML or CSV data. When the value
is pushed to /DataPoint, it is stored in complete as-is in time-series data (in the exact binary format as
provided). For details on endianness, bit lengths, and so on for supported data types see the dataType
in the Data Streams section. However, data types are not required. Data can be 1 byte status
indicators or 10k images but Remote Manager will not be able to provide rollups on things which do
not use the specified formats.
For instance, the following data service message:
path: /DataPoint/temp1.bin
content: 42

Will result in a new data point with a value of "42" (in binary).
Note: The binary concise mechanism has the following limitations:

DataPoint

Digi Remote Manager Programmer Guide 96

n Only single values can be uploaded per data service message
n Data must be smaller than 64k

Deciding which format to use when inserting data
Whitespace characters for the data value are preserved in all formats. Use quotes around the string
for CSV format to preserve break lines. For binary data, we recommend you to use binary concise
format. Binary concise format however can't be used to create multiple data points in a single
request. To create multiple binary data points in a single request, we recommend you to use a base64
encoded string.

DataStream

Digi Remote Manager Programmer Guide 97

DataStream
Note The DataStreams API is a pre-version 1 API used the get, create, modify, or delete data streams.
Data streams created by the API are supported; when creating a new data stream, use the
v1/streams API.

The DataStream web services creates, modifies, or deletes a data stream.

URI
http://<hostname>/ws/DataStream

Formats

Method Format Description

GET /ws/DataStream List all data
streams.

POST /ws/DataStream Create one
or more
data
streams.

PUT /ws/DataStream Create or
update a
data
stream.

DELETE /ws/DataStream/{streamId} Delete a
data
stream.

Elements

cstId
Remote Manager identifier for the customer.

streamId
Full path for the stream that contains the data points. Typically this is the data stream that the data
point belongs to, but if you are using replication (forwardTo) it may be different.

dataType
Type of data stored in the data stream.

n Integer: data can be represented with a network (= big-endian) 32-bit two's-complement
integer

DataStream

Digi Remote Manager Programmer Guide 98

n Long: data can be represented with a network (= big-endian) 64-bit two's complement integer
n Float: data can be represented with a network (= big-endian) 32-bit IEEE754 floating point
n Double: data can be represented with a network (= big-endian) 64-bit IEEE754 floating point
n String: UTF-8
n Binary
n Unknown

units
User-defined name for the units in which data is reported.

description
Description of the data.

forwardTo
Comma-delimited list of data streams to which to forward the data points.

dataTtl
Time to live (TTL) in seconds for data points stored in the data stream. A data point expires after the
configured amount of time and is automatically deleted.

rollupTtl
Time to live (TTL) in seconds for the aggregate roll-ups of data points stored in the stream. A roll-up
expires after the configured amount of time and is automatically deleted.

currentValue
Information about the last recorded data point (not writeable in PUT or POST requests).

Field Description

id Identifier for the data point.

timestamp Data point client timestamp.

serverTimestamp Timestamp when data point was received by the server.

data Data value of the data point.

description Data point description.

quality User-defined 32-bit integer value representing the quality of the data in the
data point.

location Geo-location information associated with the data point which indicates the
location when the data point was recorded. Geo-location is represented as a
comma-delimited list of floats in order of lat, long, elevation (degrees, degrees,
meters).

DataStream

Digi Remote Manager Programmer Guide 99

Parameters

Name Type Description

pageCursor string Page cursor returned from a previous request that can be used to retrieve
the next page of data. Omit on initial call.

size integer Maximum number of items to return. The maximum and default is 1000.

category string Return streams for the specified category: data, metrics, management, or
carrier. If you do not use the category parameter, streams for all categories
are returned.

DeviceCore

Digi Remote Manager Programmer Guide 100

DeviceCore
Use the DeviceCore web service to create, register, modify, or delete Remote Manager devices or to
retrieve information about a registered device. You can retrieve settings, connection information, and
state information for a registered device.

URI
http://<hostname>/ws/DeviceCore

Formats

HTTP method Format Description

GET /ws/DeviceCore Get a list of
devices
provisioned
in your
account.

POST /ws/DeviceCore/{devConnectwareId} Add or
register a
device in
your
account.

PUT /ws/DeviceCore/[{id}|{devConnectwareId}] Add
descriptive
text fields
for the
device.

DELETE /ws/DeviceCore/[{id} Delete a
device from
your
account.

Elements

cstId
Remote Manager identifier for the customer.

devCellularModemId
Modem identifier of the device.

devConnectwareId
Device identifier of the device.

DeviceCore

Digi Remote Manager Programmer Guide 101

devEffectiveStartDate
Date the device was provisioned in Remote Manager.

devInstallCode
Installation code for the device. An installation code is required for any device manufactured with an
associated installation code.

n If you attempt to add a device that requires an installation code with a missing or incorrect
code, you receive an HTTP status 400 error code along with a message describing the error.

n If you are adding multiple devices and one or more of the device installation code is missing or
incorrect, you receive an HTTP status 207 error along with a message describing the error.

devMac
MAC address for the device.

devRecordStartDate
Date the device record was created.

devTerminated
False if the device is currently in the customer account.

dpConnectionStatus
Connection status for the device

Value Description

0 Disconnected

1 Connected

dpContact
Contact setting from the device.

dpCurrentConnectPw
Password for the device to connect to Remote Manager. If set, the device must provide the password
to connect.

dpDescription
Description setting from the device.

dpDeviceType
Manufacturer-assigned device type, such as ConnectPort X2.

dpFirmwareLevel
Integer that represents the firmware level. For example, 34209795.

DeviceCore

Digi Remote Manager Programmer Guide 102

dpFirmwareLevelDesc
String value that represents the firmware level. For example, 2.10.0.3.

dpGlobalIp
IP address from which the device connected in IPv4 format.

dpLastConnectTime
Date the device last connected to Remote Manager. For example, 2010-07-21T15:20:00Z.

dpLastKnownIp
IP address last reported by the device in IPv4 format.

dpLocation
Location setting from the device.

dpMapLat
Map latitude setting from the device.

dpMapLong
Map longitude setting from the device.

dpPanId
PanId setting from the device.

dpRestrictedStatus
Indicates restrictions on the device for connecting to Remote Manager:

Value Description

0 Unrestricted

2 Restricted

3 Untrusted

dpServerId
Identifier of the server to which the device is currently connected.

dpTags
Comma-delimited set of user-defined tags.

dpUserMetaData
User-specified free-form text field.

DeviceCore

Digi Remote Manager Programmer Guide 103

dvVendorId
Integer that identifies the manufacturing vendor.

grpId
Remote Manager identifier for the customer group.

grpPath
Full path name of the specified group. For PUT or POST requests, if the specified group does not exist,
Remote Manager creates the group.

id
Unique identifier for the device that consists of the following elements:

n devId: System-generated identifier for the device.
n devVersion: Version for the device. A value of 0 indicates the most current version.

provisionId
Randomly-generated identifier used to provision the device. This identifier must be used in place of
devConnectwareId and you must supply a vendor ID.

xpExtAddr
ZigBee 64-bit extended address from the device.

DeviceInterface

Digi Remote Manager Programmer Guide 104

DeviceInterface
Use the DeviceInterface web service to get a list of devices and associated networks.

URI
http://<hostname>/ws/DeviceInterface

Formats

HTTP method Format Description

GET /ws/DeviceInterface Get a list of
devices and
associated
networks.

Elements
None

DeviceInterface

Digi Remote Manager Programmer Guide 105

Example: Get a list of devices and associated networks
The following example shows how to get a list of devices and associated networks.

Request

GET /ws/DeviceInterface

Response (abbreviated)

<?xml version="1.0" encoding="ISO-8859-1"?>
<result>

<resultTotalRows>3585</resultTotalRows>
<requestedStartRow>0</requestedStartRow>
<resultSize>1000</resultSize>
<requestedSize>1000</requestedSize>
<remainingSize>2585</remainingSize>
<DeviceInterface>

<id>
<devId>664928</devId>
<devVersion>0</devVersion>
<niId>0</niId>
<niVersion>0</niVersion>

</id>
<devRecordStartDate>2014-09-15T16:27:00.000Z</devRecordStartDate>
<devConnectwareId>00000000-00000000-000000FF-FF000088</devConnectwareId>
<cstId>2</cstId>
<grpId>2</grpId>
<devEffectiveStartDate>2014-09-15T16:27:00.000Z</devEffectiveStartDate>
<devTerminated>false</devTerminated>

</DeviceInterface>
<DeviceInterface>

<id>
<devId>1205698</devId>
<devVersion>0</devVersion>
<niId>0</niId>
<niVersion>0</niVersion>

</id>
<devRecordStartDate>2014-09-07T14:19:00.000Z</devRecordStartDate>
<devMac>00:40:9A:DA:01:E5</devMac>
<devConnectwareId>00000000-00000000-00409AFF-FFDA01E5</devConnectwareId>
<cstId>2</cstId>
<grpId>1326</grpId>
<devEffectiveStartDate>2014-05-08T18:44:00.000Z</devEffectiveStartDate>
<devTerminated>false</devTerminated>

</DeviceInterface>
<DeviceInterface>

<id>
<devId>1205699</devId>
<devVersion>0</devVersion>
<niId>0</niId>
<niVersion>0</niVersion>

</id>
<devRecordStartDate>2014-09-12T15:49:00.000Z</devRecordStartDate>
<devMac>00:40:9A:DA:01:E7</devMac>
<devConnectwareId>00000000-00000000-00409AFF-FFDA01E7</devConnectwareId>

DeviceInterface

Digi Remote Manager Programmer Guide 106

<cstId>2</cstId>
<grpId>2</grpId>
<devEffectiveStartDate>2014-05-08T18:44:00.000Z</devEffectiveStartDate>
<devTerminated>false</devTerminated>

</DeviceInterface>
<DeviceInterface>

<id>
<devId>1205700</devId>
<devVersion>0</devVersion>
<niId>0</niId>
<niVersion>0</niVersion>

</id>
<devRecordStartDate>2014-09-07T14:19:00.000Z</devRecordStartDate>
<devMac>00:40:9A:DA:01:E6</devMac>
<devConnectwareId>00000000-00000000-00409AFF-FFDA01E6</devConnectwareId>
<cstId>2</cstId>
<grpId>1326</grpId>
<devEffectiveStartDate>2014-05-08T18:44:00.000Z</devEffectiveStartDate>
<devTerminated>false</devTerminated>

</DeviceInterface>
<DeviceInterface>

<id>
<devId>1205701</devId>
<devVersion>0</devVersion>
<niId>0</niId>
<niVersion>0</niVersion>

</id>
<devRecordStartDate>2014-09-07T14:19:00.000Z</devRecordStartDate>
<devMac>00:40:9A:DA:01:E8</devMac>
<devConnectwareId>00000000-00000000-00409AFF-FFDA01E8</devConnectwareId>
<cstId>2</cstId>
<grpId>1326</grpId>
<devEffectiveStartDate>2014-05-08T18:44:00.000Z</devEffectiveStartDate>
<devTerminated>false</devTerminated>

</DeviceInterface>

DeviceMetaData

Digi Remote Manager Programmer Guide 107

DeviceMetaData
Use the DeviceMetaData to manage embedded device view descriptors not directly available from a
device.

URI
http://<hostname>/ws/DeviceMetaData

Formats

HTTP
Method Format Description

GET /ws/DeviceMetaData Display a list of view
descriptors for a
vendor ID.

POST /ws/DeviceMetaData Add a view descriptor.

PUT /ws/DeviceMetaData Update a view
descriptor.

DELETE /ws/DeviceMetaData Delete a view
descriptor.

Elements

dmId
Unique identifier for the metadata.

dvVendorId
Integer that identifies the manufacturing vendor.

dmDeviceType
Name of the device type.

dmProductId
Identifier of the product to which this metadata corresponds.

dmFirmwareId
Identifier of the firmware to which this metadata corresponds.

dmVersion
Firmware version to which the metadata corresponds.

DeviceMetaData

Digi Remote Manager Programmer Guide 108

dmName
Defines the descriptor type. Must be descriptor/ui.

dmCompressed
Indicates whether the metadata is compressed. Typically, metadata is not compressed.

dmData
Metadata contents.

DeviceVendor

Digi Remote Manager Programmer Guide 109

DeviceVendor
Use the DeviceVendor web service to get a list of vendor identifiers available for your account, update
the group into which new devices are provisioned, or update the default restriction status for new
devices.
To see your vendor ID or register for an ID:

1. Log in to your Remote Manager account.
2. Click Admin > Account Settings > My Account.

n If you have already registered a vendor ID, the vendor ID is displayed, as well as the
provisioning configuration.

n If you have not registered for a vendor ID, click Register for new vendor id and a
vendor ID is assigned to your account. Refresh the account page to see the assigned
vendor ID.

URI
http://<hostname>/ws/DeviceVendor

Formats

HTTP
Method Format Description

GET /ws/DeviceVendor Retrieve vendor IDs
available for your
account.

POST /ws/DeviceVendor Register a vendor ID to
use for device
development.

PUT /ws/DeviceVendor Update grpPath or
dpRestrictedStatus
elements for a vendor.

Elements

dvVendorId
Integer that identifies the manufacturing vendor.

dvVendorIdDesc
Hexadecimal representation of the Vendor ID.

cstId
Remote Manager identifier for the customer.

DeviceVendor

Digi Remote Manager Programmer Guide 110

dvDescription
Text description for the vendor ID.

dvRegistrationDate
Date when the Vendor ID was registered.

grpPath
Name of a group into which new auto-provisioned devices are put by default. <grpPath
disabled="true"/> disables auto-provisioning. If you create a new device ID by performing a
POST to ws/DeviceVendor, you can specify a grpPath that overrides the default group path.

dpRestrictedStatus
Indicates restrictions on the device for connecting to Remote Manager:

Value Description

0 Unrestricted

2 Restricted

3 Untrusted

DeviceVendorSummary

Digi Remote Manager Programmer Guide 111

DeviceVendorSummary
Use the DeviceVendorSummary web service to get a summary of device types for your vendor ID.

URI
http://<hostname>ws/DeviceVendorSummary

Formats

HTTP
Method Format Description

GET /ws/DeviceVendorSummary Retrieve a list of device
types associated with
your vendor IDs.

Elements

dvVendorId
Integer that identifies the manufacturing vendor.

dmDeviceType
Name of the device type.

dvVendorIdDesc
Hexadecimal representation of the Vendor ID.

cstId
Remote Manager identifier for the customer.

dvDescription
Text description for the vendor ID.

dmUiDescriptorCount
Indicates the number of UI descriptors for the device type.

FileData

Digi Remote Manager Programmer Guide 112

FileData
Use the FileData web service to query or locate one or more files based on file metadata, such as the
name, type, storage path, size, or modification date.

URI
http://<hostname>/ws/FileData

Formats

HTTP method Format Description

GET /ws/FileData Get a paged
list of file
metadata
for all of
your files.

PUT /ws/FileData/<fdPath>/<fdName> Upload or
change a
file or folder
in your
account.

DELETE /ws/FileData/<fdPath>/<fdName> Delete a file
or folder
from your
account.

Elements

fdPath
Specifies the hierarchical path to the file. Use the tilde character (~) to indicate your home directory.

fdName
Specifies the name of the file.

cstId
Remote Manager identifier for the customer.

fdCreatedDate
Specifies the date the file was first uploaded to Remote Manager (ISO 8601 standard format).

fdLastModifiedDate
Specifies the date the file was last modified (ISO 8601 standard format).

FileData

Digi Remote Manager Programmer Guide 113

fdContentType
Specifies the type of data stored in the file.

fdSize
Specifies the size of the file in bytes.

fdType
Specifies the file type: file or directory.
The default is file.

[fdData]
Includes the Base64-encoded content of the file. A tool to encode and decode Base64 data is available
here: http://ostermiller.org/calc/encode.html.

http://ostermiller.org/calc/encode.html

FileData

Digi Remote Manager Programmer Guide 114

Example: Get all file metadata
The following example shows how to get a paged list of file metadata for all of your files.

Request

GET /ws/FileData

Response (abbreviated)

<?xml version="1.0" encoding="UTF-8"?>
<result>

<resultTotalRows>455747</resultTotalRows>
<requestedStartRow>0</requestedStartRow>
<resultSize>1000</resultSize>
<requestedSize>1000</requestedSize>
<remainingSize>454747</remainingSize>
<FileData>

<id>
<fdPath>/db/SB723050334974_Digi_International/00000000-00000000-

00409DFF-FF640005/</fdPath>
<fdName>RPC_response-1297463631.0-0001-received_attribute_

report.xml</fdName>
</id>
<cstId>3439</cstId>
<fdCreatedDate>2011-02-11T22:34:25Z</fdCreatedDate>
<fdLastModifiedDate>2011-02-11T22:34:25Z</fdLastModifiedDate>
<fdContentType>application/xml</fdContentType>
<fdSize>506</fdSize>
<fdType>file</fdType>

</FileData>...<FileData>
<id>

<fdPath>/db/SB723050334974_Digi_International/00000000-00000000-
00409DFF-FF640005/</fdPath>

<fdName>RPC_response-1297463631.0-0003-received_attribute_
report.xml</fdName>

</id>
<cstId>3439</cstId>
<fdCreatedDate>2011-02-11T22:34:25Z</fdCreatedDate>
<fdLastModifiedDate>2011-02-11T22:34:25Z</fdLastModifiedDate>
<fdContentType>application/xml</fdContentType>
<fdSize>506</fdSize>
<fdType>file</fdType>

</FileData>
</result>

FileData

Digi Remote Manager Programmer Guide 115

Example: Get files based on conditions
The following examples show how to get files based on conditions.

Example 1: Get files written after a specified date:

GET /ws/FileData?condition=fdType='file' and fdLastModifiedDate>'2013-12-
06T14:50:00.000Z'

Example 2: Get files that match name patterns using wildcards
The following example returns all files whose name starts with 'sample' and ends with 'gas' that were
written to Remote Manager after the specified date.

GET /ws/FileData?condition=fdName like 'sample%25gas' and fdType='file' and
fdLastModifiedDate>'2013-12-06T14:50:00.000Z'

FileData

Digi Remote Manager Programmer Guide 116

Example: Get files and embed contents in the result
The following example shows how to use the embed="true" option to embed the content of the file in
the results in Base64 format.

Request

GET /ws/FileData?condition=fdPath='~/00000000-00000000-00409DFF-FF640005/' and
fdType='file'
and fdLastModifiedDate>'2010-11-24T22:25:04Z'&embed=true

Response

<?xml version="1.0" encoding="UTF-8"?>
<result>

<resultTotalRows>1264</resultTotalRows>
<requestedStartRow>0</requestedStartRow>
<resultSize>1000</resultSize>
<requestedSize>1000</requestedSize>
<remainingSize>264</remainingSize>
<FileData>

<id>
<fdPath>/db/SB723050334974_Digi_International/00000000-00000000-

00409DFF-FF640005/</fdPath>
<fdName>RPC_response-1297463631.0-0001-received_attribute_

report.xml</fdName>
</id>
<cstId>3439</cstId>
<fdCreatedDate>2011-02-11T22:34:25Z</fdCreatedDate>
<fdLastModifiedDate>2011-02-11T22:34:25Z</fdLastModifiedDate>
<fdContentType>application/xml</fdContentType>
<fdSize>506</fdSize>
<fdType>file</fdType>
<fdData>....</fdData>

</FileData>...<FileData>
<id>

<fdPath>/db/SB723050334974_Digi_International/00000000-00000000-
00409DFF-FF640005/</fdPath>

<fdName>attribute_report.xml</fdName>
</id>
<cstId>3439</cstId>
<fdCreatedDate>2011-02-11T22:34:25Z</fdCreatedDate>
<fdLastModifiedDate>2011-02-11T22:34:25Z</fdLastModifiedDate>
<fdContentType>application/xml</fdContentType>
<fdSize>506</fdSize>
<fdType>file</fdType>
<fdData>....</fdData>

</FileData>
</result>

FileDataCore

Digi Remote Manager Programmer Guide 117

FileDataCore
Use the FileDataCore web service to get a count and listing of all files stored on Remote Manager for
your account. FileDataCore does not return file contents. To retrieve file contents, use the FileData
web service.

URI
http://<hostname>/ws/FileDataCore

Format

HTTP method Format Description

GET /ws/FileDataCore Get a
summary
count and
listing of all
files for
your
Remote
Manager
account.

Elements
None

FileDataHistory

Digi Remote Manager Programmer Guide 118

FileDataHistory
Use the FileDataHistory web service to display activity history for files you have uploaded to a device.
You can display archive history only for files that have a flag set to archive to the history table when
the file was originally uploaded.

URI
http://<hostname>/ws/FileDataHistory

Formats

HTTP method Format Description

GET /ws/FileDataHistory Display
activity
history for
each file
you have
uploaded to
a device.

Elements
None

Group

Digi Remote Manager Programmer Guide 119

Group
Use the Group web service to retrieve information about groups in your Remote Manager account.

URI
http://<hostname>/ws/Group

Formats

HTTP method Format Description

GET /ws/Group Get a list of all groups
in your Remote
Manager account.

Elements

grpId
Remote Manager identifier for the customer group.

grpName
Name of the group.

grpDescription
Description of the group.

grpPath
Full path name of the specified group.

grpParentId
Integer representation of the group parent.

Monitor

Digi Remote Manager Programmer Guide 120

Monitor
Use the Monitor web service to monitor Remote Manager activity and push notifications to a client
application. Each configured monitor specifies the Remote Manager events or activities to monitor,
the notification mechanism, and the transport type (TCP, HTTP, or Polling).
Monitored events can include:

n Data: Data pushed into Remote Manager from remote gateways in the form of DataPoints
(directly or through DIA or Smart Energy), FileData, and so on.

n Status: General status updates such as connection status, remote device availability, and so
on.

n Alarms: Alarm status updates, such as when alarms are triggered or reset.

Note FileData and FileDataCore events are not published when the file size is larger than 120K. Delete
operations for FileData events are never published.

The Monitor web service is available only for Remote Manager accounts with a subscription to the
Push Monitor service.
For information on retrieving saved pushed notifications, see v1/monitors/history.

URI
http://<hostname>/ws/Monitor

Formats

HTTP method Format Description

GET /ws/Monitor Get a list of
all
configured
monitors.

GET /ws/Monitor/{monId} Get details
for a specific
monitor.

POST /ws/Monitor Create a
new monitor
to push
event
notifications.

Monitor

Digi Remote Manager Programmer Guide 121

HTTP method Format Description

PUT /ws/Monitor/{monId} Update an
existing
monitor.
Note that
any PUT
request to a
monitor
resets the
monitor
state.

DELETE /ws/Monitor/{monId} Delete a
monitor.

Elements

monId
System-generated identifier for the monitor.

cstId
Remote Manager identifier for the customer.

monFormatType
Format for delivered event data:

n xml
n json

monTopic
One or more topics to monitor. Supported monitor topics include:

n Alarm
n AlarmStatus
n DataPoint
n DataStream
n DeviceCore
n FileData
n FileDataCore
n Job
n JobResult
n XbeeCore

Note The following monitor topics have been deprecated and should not be used: DiaChannelDataFull,
XbeeAttributeDataCore, XbeeEventDataCore.

Monitor

Digi Remote Manager Programmer Guide 122

Note FileData and FileDataCore events are not published when the file size is larger than 120K. Delete
operations for FileData events are not published.

Note DataStream updates publish changes to DataStream attributes only, not currentValues. To get
changes for currentValue, monitor the DataPoint topic to get changes to the current value as they
arrive.

To
monitor Specify

general
topic

Resource name only. For example:

DataPoint

Monitors all DataPoint events.

specific
resource

Resource name followed by the resource ID using standard REST slash conventions. For
example:

DataPoint/00000000-00000000-00000000-00000000

Monitors DataPoint events reported by the specific device.

multiple
topics

Comma-delimited list of topics. For example:

DataPoint,DeviceCore

Monitors all DataPoint and Device data for the current customer.

scope by
operation

By default, all operations for the specified monitor topic are monitored. To limit the
monitor topic to specific operations, prefix the monitor topic with the operation
qualifier. Valid operations:

n C for create
n U for any update
n D for delete

For example, to monitor update operations only for DeviceCore:

[operation=U]DeviceCore

To monitor create and update operations for DeviceCore:

[operation=C,U]DeviceCore

scope by
group

By default, all groups for the specified monitor topic are monitored. To limit the
monitor topic to one or more groups, prefix the monitor topic with the group qualifier.
For example:

[group=America,Columbia]DeviceCore

Monitor

Digi Remote Manager Programmer Guide 123

To
monitor Specify

scope by
operation
and group

To use both the operation and the group qualifiers, prefix the monitor topic with both
qualifiers:

[operation=C,U,D][group=America,Columbia]DeviceCore

Note You can prefix the qualifiers in any order.

special
characters

URL encode the following special characters when specifying additional subtopic
components:

/ (forward slash)
% (percent sign)
. (period)
* (asterisk)
[(open bracket)
] (close bracket)

When monitor topics are reported, components are URL encoded. This allows for easy
parsing of monitor topics. The general procedure is to split the published topic string on
the backslash (/) separator character and then URL decode the identified components.

monTransportType
Transport method used to deliver push notifications to the client application:

n tcp: Push notifications are sent using TCP. See TCP transport protocol.
n http: Push notifications are sent using HTTP. See HTTP/HTTPS transport protocol.
n polling: Push notifications are saved but not sent. See v1/monitors/history for information on

retrieving polling monitor notifications.

monTransportUrl
For HTTP transport type only. URL of the customer web server. For http URLs, the default listening
port is 80; for https URLs, the default listening port is 443.

monTransportToken
For HTTP transport type only. Credentials for basic authentication in the following format:

username:password

monTransportMethod
For HTTP transport type only. HTTP method to use for sending data: PUT or POST. The default is PUT.

monConnectTimeout
For HTTP transport type only. Time in milliseconds Remote Manager waits when attempting to
connect to the destination http server. A value of 0 means use the system default of 5000 (5 seconds).
Most monitors do not need to configure this setting.

Monitor

Digi Remote Manager Programmer Guide 124

monResponseTimeout
For HTTP transport type only. Time in milliseconds Remote Manager waits for a response for pushed
events from the http server. A value of 0 means use the system default of 5000 (5 seconds). Most
monitors do not need to configure this setting.

monAckOption
For TCP transport type only. Indicates whether the client will explicitly acknowledge TCP push events
or allow Remote Manager to automatically acknowledge events when sent. Options include: explicit or
off. The default is off.

monBatchSize
Specifies an upper bound on how many messages are aggregated before sending a batch. The default
is 100.

monBatchDuration
Specifies an upper bound on the number of seconds messages are aggregated before sending. The
default is 10.

monCompression
Keyword that specifies the method used to compress messages. Options include: zlib or none. The
default is none. For zlib, the deflate algorithm is used to compress the data; use inflate to decompress
the data.

Note For backwards compatibility, gzip is accepted as a valid keyword. Compression has always been
done using the deflate algorithm.

monAutoReplayOnConnect
Boolean value that specifies whether Remote Manager replays any missed published events before
any new published events are forwarded. True indicates missed published events are replayed. False
indicates missed published events are not replayed. The default is false.

monDescription
Optional text field used to label or describe the monitor.

monLastConnect
Returned in the GET response. Specifies last connection time to the client application.

monLastSent
Returned in the GET response. Specifies the last message pushed to the client application.

monStatus
Returned in the GET response. Specifies the current connection status to the client application.

Monitor

Digi Remote Manager Programmer Guide 125

Status Description

CONNECTING For HTTP monitors only. Remote Manager is attempting to connect to the
configured HTTP server. Once connected, the state changes to ACTIVE.

ACTIVE Monitor is connected and publishing events.

INACTIVE Monitor is not connected and events are not published or recorded.

SUSPENDED For monitors with monAutoReplayOnConnect = True.
Monitor has disconnected, but publish events are recorded for later replay.

DISABLED For HTTP monitors only. If a monitor has not connected for 24 hours, the state is set
to DISABLED, and publish events are not recorded for replay. A disabled monitor
must be reconfigured via the Monitor web service.

DISCONNECT Monitor is currently disconnecting, and events are not being published. For monitors
with monAutoReplayOnConnect = True, events are recorded for later replay.
(Dashboard shows status as Disconnecting.)

Any PUT request to a monitor resets the monitor state.

Monitor

Digi Remote Manager Programmer Guide 126

Example: List all monitors
The following example shows how to list all configured monitors.

Request

GET /ws/Monitor

Response

<?xml version="1.0" encoding="ISO-8859-1"?>
<result>
<resultTotalRows>4</resultTotalRows>
<requestedStartRow>0</requestedStartRow>
<resultSize>4</resultSize>
<requestedSize>1000</requestedSize>
<remainingSize>0</remainingSize>
<Monitor>
<monId>148214</monId>
<cstId>2</cstId>
<monLastConnect>2014-07-09T22:01:41.187Z</monLastConnect>
<monLastSent>2014-07-09T22:02:09.000Z</monLastSent>
<monTopic>DeviceCore</monTopic>
<monTransportType>tcp</monTransportType>
<monFormatType>json</monFormatType>
<monBatchSize>1</monBatchSize>
<monCompression>zlib</monCompression>
<monStatus>INACTIVE</monStatus>
<monBatchDuration>60</monBatchDuration>
<monLastSentUuid>ac59ee13-07b4-11e4-a573-fa163ef93b22</monLastSentUuid>

</Monitor>
<Monitor>
<monId>148215</monId>
<cstId>2</cstId>
<monLastConnect>2014-07-21T21:24:02.507Z</monLastConnect>
<monLastSent>2014-07-14T17:17:15.000Z</monLastSent>
<monTopic>DeviceCore,XbeeCore</monTopic>
<monTransportType>http</monTransportType>
<monTransportUrl>https://google.com</monTransportUrl>
<monFormatType>json</monFormatType>
<monBatchSize>100</monBatchSize>
<monCompression>none</monCompression>
<monStatus>DISABLED</monStatus>
<monBatchDuration>10</monBatchDuration>
<monTransportMethod>PUT</monTransportMethod>

</Monitor>
<Monitor>
<monId>148218</monId>
<cstId>2</cstId>
<monLastConnect>2014-07-21T20:41:52.350Z</monLastConnect>
<monLastSent>2014-07-21T19:15:37.000Z</monLastSent>
<monTopic>DeviceCore,AlarmStatus</monTopic>
<monTransportType>tcp</monTransportType>
<monFormatType>json</monFormatType>
<monBatchSize>1</monBatchSize>
<monCompression>none</monCompression>

Monitor

Digi Remote Manager Programmer Guide 127

<monStatus>DISABLED</monStatus>
<monBatchDuration>1</monBatchDuration>
<monAutoReplayOnConnect>true</monAutoReplayOnConnect>
<monLastSentUuid>6590870c-110b-11e4-b325-fa163ef93b22</monLastSentUuid>

</Monitor>
<Monitor>
<monId>148447</monId>
<cstId>2</cstId>
<monLastConnect>2014-09-19T14:13:19.077Z</monLastConnect>
<monLastSent>2014-09-17T18:24:08.317Z</monLastSent>
<monTopic>JobResult</monTopic>
<monTransportType>http</monTransportType>

<monTransportUrl>http://10.235.3.133:8080/profilemanager/monitor/push</monTranspo
rtUrl>
<monFormatType>xml</monFormatType>
<monBatchSize>1000</monBatchSize>
<monCompression>none</monCompression>
<monStatus>DISABLED</monStatus>
<monBatchDuration>10</monBatchDuration>
<monAutoReplayOnConnect>true</monAutoReplayOnConnect>
<monTransportMethod>PUT</monTransportMethod>
<monLastSentUuid>4ca204aa-3e71-11e4-8f05-fa163e6d4ac5</monLastSentUuid>

</Monitor>
</result>

Monitor

Digi Remote Manager Programmer Guide 128

Example: Create an HTTP monitor
The following sample shows how to create a simple HTTP monitor.

POST /ws/Monitor

<Monitor>
<monTopic>DeviceCore,XbeeCore</monTopic>
<monTransportType>http</monTransportType>
<monTransportUrl>https://your web site url</monTransportUrl>
<monTransportToken>username:password</monTransportToken>
<monTransportMethod>PUT</monTransportMethod>
<monFormatType>json</monFormatType>
<monBatchSize>100</monBatchSize>
<monCompression>none</monCompression>
<monBatchDuration>10</monBatchDuration>

</Monitor>

Example: Create a TCP monitor
The following sample shows how to create a TCP monitor.

POST /ws/Monitor

<Monitor>
<monTopic>DeviceCore,XbeeCore</monTopic>
<monTransportType>tcp</monTransportType>
<monFormatType>json</monFormatType>
<monBatchSize>100</monBatchSize>
<monCompression>none</monCompression>
<monBatchDuration>10</monBatchDuration>
<monAckOption>explicit</monAckOption>
<monAutoReplayOnConnect>true</monAutoReplayOnConnect>

</Monitor>

Monitor

Digi Remote Manager Programmer Guide 129

Example: Recover a disabled monitor
An HTTP monitor that is not able to successfully connect over a 24 hour period is disabled. Once
disabled:

n System alarm is generated to indicate the monitor state was changed to disabled.
n Remote Manager does not make any more attempts to connect the monitor.
n Persistent monitors no longer store missed monitor events.

To recover a disabled monitor, re-enable the monitor using a PUT request. When recovered, the back-
off sequence is restarted from the beginning. The minimum content required in the PUT is the monId
element (21 in the following example):
PUT /ws/Monitor

<Monitor>
<monId>21</monId>

</Monitor>

Monitor

Digi Remote Manager Programmer Guide 130

Example: Delete a monitor
The following sample shows how to delete a monitor.

DELETE /ws/Monitor/148214

Monitor

Digi Remote Manager Programmer Guide 131

Example: Delete monitors based on conditions
The following examples shows how to delete all TCP monitors that are currently inactive:

DELETE ws/Monitor?condition=monTransportType='tcp' and monStatus='INACTIVE'

Example: Create a polling monitor
The following sample shows how to create a polling monitor.

Request

POST /ws/Monitor

<Monitor>
<monTopic>DeviceCore,DataPoint/00000000-00000000-00000000-00000000</monTopic>
<monTransportType>polling</monTransportType>
<monDescription>Query monitor saves push notifications but does not send

them.</monDescription>
</Monitor>

Response

<?xml version="1.0" encoding="ISO-8859-1"?>
<result>
<location>Monitor/433016</location>

</result>

To query the data from a polling monitor, see v1/monitors/history.

Example: Monitor Profile Manager status with a push monitor
The following example shows how to update an external application using a push monitor to show the
results of profile manager. This example consists of the following steps:

n Determine profile alarm ID
n Note the alarm ID in the <almid> tag

Issue http get to /ws/Alarm

View the results in the response pane

<?xml version="1.0" encoding="ISO-8859-1"?>
<result>
<resultTotalRows>1</resultTotalRows>

Monitor

Digi Remote Manager Programmer Guide 132

<requestedStartRow>0</requestedStartRow>
<resultSize>1</resultSize>
<requestedSize>1000</requestedSize>
<remainingSize>0</remainingSize>
<Alarm>
<almId>12163</almId>
<cstId>2899</cstId>
<almtId>1</almtId>
<grpId>3560</grpId>
<almName>Device Profile</almName>
<almDescription>Device Profile Alarm</almDescription>
<almEnabled>true</almEnabled>
<almPriority>1</almPriority>
<almScopeConfig>
<almScopeConfig/>

</almScopeConfig>
<almRuleConfig>
<almRuleConfig/>

</almRuleConfig>
</Alarm>

</result>

Note the alarm ID in the <almId> tag

<almId>12163</almId>

Monitor

Digi Remote Manager Programmer Guide 133

HTTP/HTTPS transport protocol
This section highlights the details associated with an HTTPS or HTTP connection between the Remote
Manager server and the customer web server. This is a high speed, transport over a HTTP connection.
This transport requires that the customer has a publicly facing web server application. Remote
Manager will be the HTTP client and will push any configured published events to the customer's web
server. This transport uses basic authentication and therefore HTTPS is recommended. HTTP is
available for debugging or troubleshooting.
To configure an HTTP monitor, specify http as the monTransportType setting. Additionally, specify
monTransportUrl and monTransportToken options.
monTransportType: (Required) Sets the transport type, TCP or HTTP. For HTTP, set the transport
type to HTTP.
monTransportUrl: (Required) Specifies the URL of the customer web server. The URL should be of the
following form:

http[s]://customer.domain.com/application/path

monTransportToken: (Required) Specifies the credentials for basic authentication in the following
format:

username:password

monTransportMethod: (Optional) Specifies the HTTP method to use to send data: PUT or POST. The
default is PUT.
The following example shows how to create an HTTP monitor:

<Monitor>
<monTopic>DeviceCore,XbeeCore</monTopic>
<monTransportType>http</monTransportType>
<monTransportUrl>your website url</monTransportUrl>
<monTransportToken>username:password</monTransportToken>
<monTransportMethod>PUT</monTransportMethod>
<monFormatType>json</monFormatType>
<monBatchSize>100</monBatchSize>
<monCompression>none</monCompression>
<monBatchDuration>10</monBatchDuration>

</Monitor>

Protocol
Once the HTTP monitor has been configured, the monitor will be activated and Remote Manager will
connect to the customer's web server. Any matching events will be published to the specified URL
using the supplied token credentials. Please note that if the monitor's URL or credentials are
configured incorrectly or if the customer's web server is unreachable, Remote Manager will
periodically attempt to connect to the web server for up to 24 hours. The monitor will be disabled
after 24 hours without a successful connection.
Events are published using the configured monTransportMethod: PUT or POST. The default is an HTTP
PUT operation. The standard HTTP headers of the published event include:

n Authorization: Basic…
n Content-Type: "application/xml;charset=UTF-8" or "application/json;charset=UTF-8"

Monitor

Digi Remote Manager Programmer Guide 134

n Content-Length: indicates how many bytes of payload data are in the message
n [Content-Encoding: deflate] - if present, indicates the monitor event data is compressed

Additionally, the following custom header fields will be set to describe the payload being delivered:

n Monitor-Protocol-Version: indicates what version of push protocol is being used. The current
version is '1'.

n Monitor-DataBlockId: a rotating integer ID that identifies the data block.
n Monitor-Aggregate-Count: the number of publish events included in this batch.

The body of the PUT operation is the published event payload data. Its format, compression, and size
are indicated in the headers above. The payload data format is the same as for the TCP transport.
The returned HTTP status code indicates the ability of the customer application to receive and
process the data:

n 200 - indicates customer application successfully received and processed the data

Monitor

Digi Remote Manager Programmer Guide 135

Monitor published events payload
Data is encapsulated in a message envelope that includes the topic, operation, and timestamp plus
the data itself. This will be formatted according to the format type requested when establishing the
monitor. Additionally, when the monAutoReplayOnConnect option is enabled, there will be a
replay="true" attribute if the message is being resent.

XML format

<?xml version="1.0" encoding="UTF-8"?>
<Msg topic="3/DeviceCore/882/7" operation="create|update|delete" timestamp="2010-
12-03T13:34:00.001Z" [replay="true"]>

<DeviceCore>
<id>

<devId>882</devId>
<devVersion>7</devVersion>

</id>
<devRecordStartDate>2010-12-03T13:34:00Z</devRecordStartDate>
<devMac>00:40:9D:3D:71:15</devMac>
<devConnectwareId>00000000-00000000-00409DFF-FF3D7115</devConnectwareId>
...

</DeviceCore>
</Msg>

JSON format

{
"Document":{

"Msg":{
"timestamp":"2010-12-03T13:34:00.001Z",
"topic":"3/DeviceCore/882/7",
"operation":"UPDATE",
"DeviceCore":{

"id":{
"devId":882,
"devVersion":7

},
"devMac":"00:40:9D:3D:71:15",
"...": "..."

}
}

}
}

Monitor

Digi Remote Manager Programmer Guide 136

TCP transport protocol
This section details standard TCP/IP and SSL socket connections between a client application and
Remote Manager. Because authentication messages flow across the socket, we strongly recommend
using SSL. Use standard TCP/IP connections for debugging and troubleshooting only.

Monitor configuration options for TCP
The Monitor API provides two TCP-specific elements:
monTransportType: (Required) Sets the transport type, TCP or HTTP. For TCP, set the transport type
to TCP.
monAckOption: (Optional) Specifies acknowledge options for sent messages.

n explicit: Client must explicitly acknowledge TCP push events.
n off: Remote Manager automatically acknowledges events when sent.

The default is off.
The following example shows how to create a TCP monitor:

<Monitor>
<monTopic>DeviceCore,XbeeCore</monTopic>
<monTransportType>tcp</monTransportType>
<monFormatType>json</monFormatType>
<monBatchSize>100</monBatchSize>
<monCompression>none</monCompression>
<monBatchDuration>10</monBatchDuration>
<monAckOption>explicit</monAckOption>
<monAutoReplayOnConnect>true</monAutoReplayOnConnect>

</Monitor>

Protocol
When a monitor is created through the Web Services API, a Monitor ID is assigned and returned to the
caller. If the monitor is configured to use the TCP transport the customer application can activate the
monitor by establishing a TCP socket connection back to the Remote Managerserver. SSL monitor
sockets should be made to port 3201 while unsecure TCP sockets should be made to port 3200.
Once Remote Manager makes the socket connection, the customer application must send a
ConnectRequest message through that connection to the Remote Manager server. The server will
authenticate the request and send back a response. Once the connect request succeeds, the server
will begin sending PublishMessages to the customer application as events matching the monitor
configuration occur. There are two options on how the customer application can acknowledge the
PublishMessages: explicit and off. The acknowledgment option is configured using the monAckOption
in the Monitor web service. If not specified, the monAckOption defaults to off.
Explicit means that the customer application will acknowledge the receipt of PublishMessages using
the PublishMessageReceived message. The dataBlockId in the PublishMessageReceived indicates
that all events up to and including that dataBlockId were successfully received, i.e. one
PublishMessageReceive message can acknowledge multiple PublishMessages. If the customer
application detects a missing dataBlockId or cannot process a PublishMessage, it should disconnect
the TCP socket. On the next reconnect, the replay will start with the unacknowledged push event.
(Note that monAutoReplayOnConnect needs to be enabled.)
The off option means that Remote Manager will treat the push event as acknowledged when it is
written to the TCP socket. Any PublishMessageReceived messages will be ignored by Remote
Manager if the monitor is configured with monAckOption set to off.

Monitor

Digi Remote Manager Programmer Guide 137

As long as the monitor socket connection remains open, monitor events will flow from the server to
the customer application per the requirements established in the monitor configuration. If the socket
is closed for any reason, the monitor will be deactivated and monitor events will stop flowing to the
customer application. When the monitor is deactivated, the monitor’s status will be marked as
SUSPENDED (for monitors configured for auto replay of missed events using
monAutoReplayOnConnect), otherwise INACTIVE. The customer application can reactivate the
monitor socket in the same manner as the initial connection.

Conventions
In this protocol, all multi-byte numeric fields must be transmitted in big endian format. All text data
must be transmitted as UTF-8 characters. See RFC 2279 as a reference for this format.

Framing
All messages between the client application and the Remote Manager server are framed as follows:

n Header [6 Bytes]
l Type: [2 Bytes] - indicates the type of message being exchanged
l Length: [4 Bytes] - indicating size of the framed message payload

n Payload [n Bytes] - the wrapped message

http://www.ietf.org/rfc/rfc2279.txt

Monitor

Digi Remote Manager Programmer Guide 138

ConnectRequest message
To initiate a new monitor connection, send a ConnectRequest message from the client application to
Remote Manager. This is the first message sent upon connect and will authenticate and activate the
monitor.
Header [6 Bytes] Type=0x0001
Payload:

n ProtocolVersion: [2 Bytes] - indicates what version of push protocol is being used. The current
version is 0x0001.

n UserNameLen [2 Bytes] - length of UserName payload
n UserName: [UTF-8 encoded byte array] - the username to authenticate connection
n PasswordLen [2 Bytes] - length of Password payload
n Password: [UTF-8 encoded byte array] - the password to authenticate connection
n MonitorId: [4 Bytes] - the ID of the monitor for this connect

Example

Legend:
Type: 0x0001
Size: 0x00000013
ProtocolVersion: 0x0001
UsernameSize: 0x0005
Username: 0x7065707369 (pepsi)
PasswordSize: 0x0004
Password: 0x636f6c61 (cola)
MessageId: 0x00000104

Monitor

Digi Remote Manager Programmer Guide 139

ConnectResponse message
The response to ConnectRequest, sent from Remote Manager to the client application, is a
ConnectResponse message. This indicates to the client application the status of the web services
request, as well as the protocol version that Remote Manager is speaking.
Header [6 Bytes] Type=0x0002
Payload:

n Status Code: [2 Bytes]
n ProtocolVersion: [2 Bytes] - indicates what version of push protocol is being used

Example:

Legend:
Type: 0x0002
Size: 0x00000004
Status: 0x0001
ProtocolVersion: 0x0001

Monitor

Digi Remote Manager Programmer Guide 140

PublishMessage message
As monitored events occur, Remote Manager will send PublishMessage messages to the client
application.
Header [6 Bytes] Type=0x0003
Payload:

n DataBlockId: [2 Bytes] - rotating id that uniquely identifies the data block
n Count: [2 Bytes] - number of messages in this batch
n Compression: [1 Byte] - indicates what payload compression algorithm is being used

(0x00=none, 0x01=zlib)
n Format: [1 Byte] - indicates data format of payload (0x00=xml, 0x01=json)
n PayloadSize: [4 Bytes] - indicates how many bytes of payload data follow
n PayloadData: [n Bytes] - the actual Monitor event data (may be compressed & Base64

encoded)

Example:

Legend:
Type: 0x0003
Size: 0x00000215
DataBlockId: 0x01A7
Count: 0x0002
Compression: 0x00
Format: 0x00
PayloadSize: 0x00000205
PayloadData: 0x3C446F63756D656E74 … 6E743E

<Document>
<Msg topic="3/DeviceCore/882/7" operation="update" timestamp="2010-12-

03T13:34:00.001Z">
<DeviceCore>...</DeviceCore>

</Msg>
<Msg

topic="3/XbeeCore/00:13:A2:00:40:01:60:45/1/0/1794/256"operation="update"
timestamp="2010-12-03T13:34:00.001Z">

<XbeeCore>...</XbeeCore>
</Msg>

</Document>

Monitor

Digi Remote Manager Programmer Guide 141

PublishMessageReceived message
In response to a PublishMessage message, the client application will send a PublishMessageReceived
to acknowledge the message was received and what its processing status is.
Header [6 Bytes] Type=0x0004
Payload:

n DataBlockId: [2 Bytes] - corresponds to incoming DataBlockId
n Status: [2 Bytes] 200 - indicates customer application successfully received and processed the

data

Example:

Type: 0x0004
Size: 0x00000004
Status: 0x00C8

NetworkInterface

Digi Remote Manager Programmer Guide 142

NetworkInterface
NetworkInterface contains specific information related to external network interfaces for devices
where Remote Manager needs to have knowledge of that information in order to interact with those
devices. For example, Remote Manager uses NetworkInterface records to associate phone numbers
with one or more mobile identification numbers (SIM or modem serial number, depending upon the
mobile technology).

URI
http://<hostname>/ws/NetworkInterface

Formats

HTTP Method Format Description

GET /ws/NetworkInterface Display a list
of modems
provisioned
in your
account.

POST /ws/NetworkInterface Add a
modem to
your
account.

PUT /ws/NetworkInterface Update
modem
information
for your
account.

DELETE /ws/NetworkInterface Delete a
modem from
your
account.

Elements

id
Element that uniquely identifies the network interface and consists of the following:

niId
System-generated identifier for the network interface.

NetworkInterface

Digi Remote Manager Programmer Guide 143

niVersion
A value of 0 indicates the most recent version of the network interface record.

niPhoneCarrier
An integer that represents the telephone carrier service subscription for the network
interface. The value is specific to the internal implementation of the SMS service used to
send and receive SMS messages.

niTerminated
Boolean value that indicates whether the network interface is terminated. Enter either
true or false.

niEffectiveStartDate
Date the network interface was added to Remote Manager.

cstId
Remote Manager identifier for the customer.

grpId
Remote Manager identifier for the customer group.

devId
Device ID of the device associated with this network interface record.

devVersion
A value of 0 which indicates the most recent version of the device record.

niInterfaceType
Integer that indicates the network interface type:

0: None
1: GSM
2: CDMA
3: ORBCOMM
4: Iridium

niSimId
Network interface SIM indentifier which is the ICCID, MEID, or ESN of the SIM or cellular modem.

niModemId
Modem ID of the satellite modem.

niPhone
Telephone number of the cellular line using international format for telephone numbers. For example:

NetworkInterface

Digi Remote Manager Programmer Guide 144

+1 123-456-7890

niActivePhone
Boolean value that indicates whether this network interface record contains the telephone number
(niPhone) to which Remote Manager sends SMS messages for this device. Only one NetworkInterface
record can have niActivePhone set to true per device.

niIdigiPhone
Short or long code the device uses to communicate with Remote Manager.

niIdigiServiceId
Keyword used in the shared code

niImsi
International Mobile Subscriber Identity (IMSI) of the SIM.

NetworkInterfaceSubscriptionCore

Digi Remote Manager Programmer Guide 145

NetworkInterfaceSubscriptionCore
Use the NetworkInterfaceSubscriptionCore web service to get subscription information for your
devices based on the network interface records. The listing indicates whether carrier accounts have
been assigned to the network interface records and what metrics are collected for each.

URI
http://<hostname>/ws/NetworkInterfaceSubscriptionCore

Formats

HTTP Method Format Description

GET /ws/NetworkInterfaceSubscriptionCore Display a
list of
modems
provisioned
in your
account.

Elements

cstId
Remote Manager identifier for the customer.

id
Element that uniquely identifies the network interface and consists of the following:

niId
System-generated identifier for the network interface.

subId
Subscription identifier.

Remote command interface (RCI)

Digi Remote Manager Programmer Guide 146

Remote command interface (RCI)
Remote Command Interface (RCI) is a mechanism that allows remote configuration, control, and
information exchange between an RCI client, typically a web services client acting via Remote
Manager, and an RCI target, typically a Digi device implementing the RCI specification.
RCI consists of a transport mechanism, such as the Remote Manager device protocol, EDP, and an
XML-based request and reply document specification. For complete information on RCI, see Remote
Command Interface (RCI) specification.

http://www.digi.com/resources/documentation/digidocs/90000569/default.htm
http://www.digi.com/resources/documentation/digidocs/90000569/default.htm

Schedule

Digi Remote Manager Programmer Guide 147

Schedule
Use the Schedule web service to create, modify, or delete a schedule.

URI
http: //<hostname>/ws/Schedule

Formats

HTTP method Format Description

GET /ws/Schedule Get a list of
scheduled
tasks for your
account.

POST /ws/Schedule Create a
schedule for a
defined task
template.

PUT /ws/Schedule/{schId} Modify a
schedule.

DELETE /ws/Schedule/{schId} Delete a
schedule.

Elements

schId
System-generated identifier for the schedule.

schDescription
Description of the schedule.

schExpression
Expression that determines when the schedule runs: For example, IMMEDIATE.

schTargets
One or more targets for the schedule tasks.

schStartTime
Time at which the schedule started execution.

Schedule

Digi Remote Manager Programmer Guide 148

schStopTime
Time at which the schedule stopped execution.

schStatus
Current status of the schedule:

0 = new
1 = in_progress
3 = complete
4 = canceled

schPreviousRunTime
Time at which the schedule was last executed.

task
Task template associated with the schedule.

Example: Schedule device reboot
The following example shows how to schedule a device to reboot immediately. The example uses the
Schedule and Task APIs to post the schedule to your device and then steps through the process of
verifying that your device rebooted successfully.

Request

GET /ws/Task

Response

<?xml version="1.0" encoding="ISO-8859-1"?>
<result>
<resultTotalRows>1</resultTotalRows>
<requestedStartRow>0</requestedStartRow>
<resultSize>1</resultSize>
<requestedSize>1000</requestedSize>
<remainingSize>0</remainingSize>
<Task>
<tskId>732</tskId>
<schId>258</schId>
<cstId>2</cstId>
<usrId>9</usrId>
<tskScheduledTime>2014-12-14T20:59:58.070Z</tskScheduledTime>
<tskStartTime>2014-12-14T20:59:58.200Z</tskStartTime>
<tskTargets>00000000-00000000-886123FF-FF000026</tskTargets>
<tskSuccess>0</tskSuccess>
<tskFailures>0</tskFailures>
<tskStatus>1</tskStatus>
<tskRequestPayload>
<description>Another Schedule</description>

Schedule

Digi Remote Manager Programmer Guide 149

<command>
<name>List Files</name>
<event>
<on_error>
<end_task/>

</on_error>
</event>
<sci>
<file_system allowOffline="true">
<commands>
<ls path="/"/>

</commands>
</file_system>

</sci>
</command>

</tskRequestPayload>
<tskTargetCount>1</tskTargetCount>
<tskDescription>Another Schedule</tskDescription>

</Task>
</result>

SCI (Server command interface)

Digi Remote Manager Programmer Guide 150

SCI (Server command interface)
SCI (Server Command Interface) is a web service that allows users to access information and perform
commands that relate to their device. SCI is available only in Premier Edition accounts. If you are
unable to use SCI, contact Remote Manager support to make changes to your account.
Examples of SCI requests include:

n Retrieve live or cached information about your device(s)
n Change settings on your device(s)
n Interact with a Python program running on your device(s) to send commands or retrieve

information
n Read from and write to the file system on your device(s)

l Update your Python applications
l Retrieve data stored locally on your device(s)

n Update device firmware
n Update XBee radio firmware on your device(s)
n Remotely reboot your device(s)

The operations can be performed synchronously or asynchronously. Synchronous requests are useful if
you would like to execute a short request to the server and block until the operation is completed.
Asynchronous requests are useful when you want to execute a request that has the possibility of
taking a while to complete or you simply want to send the request off and return immediately. With
asynchronous requests, you receive an ID that you can later use to check on the job status and
retrieve results.
An SCI request is composed of XML that is posted to http(s)://<hostname>/ws/sci.

SCI request
Every SCI request looks like the following:

<sci_request version="1.0">
<{operation_name}>

<targets>
{targets}

</targets>
{payload}

</{operation_name}>
</sci_request>

operation_name is either send_message, update_firmware, disconnect, or query_firmware_targets
targets contains one or more elements that look like: <device id="{device_id}"/>, <device
id="all"/>, <device tag="{tag name}"/>, or <group path="{group name}"/>
payload is dependent on the operation

File Reference
The payload for an SCI command can be referenced from a file in Remote Manager Data Services as
opposed to being explicitly described in the actual request. For example, the following SCI request
payload is referenced instead of explicitly declared in the XML:

SCI (Server command interface)

Digi Remote Manager Programmer Guide 151

<sci_request version="1.0">
<send_message>

<targets>
<device id="00000000-00000000-00000000-00000000"/>

</targets>
<file>/~/my_commands/set_settings.xml</file>

</send_message>
</sci_request>

Where the content of set_settings.xml could be similar to the following:

<rci_request>
<set_setting>

<query_setting>....</query_setting>
</set_setting>

</rci_request>

SCI targets
The targets field within an SCI request can be one of the following elements:

n <device id="{device_id}"/>
When included in an SCI request, this element specifies a particular device ID. Requests issued
will only be sent to the specified device.

n <device id="all"/>
When included in an SCI request, this element specifies the device IDs of all of your Remote
Manager-registered devices. Requests issued will be sent to all of the devices registered within
your Remote Manager user account.

n <device tag="{tag name}"/>
When included in an SCI request, this element specifies a particular tag name. Requests issued
will be sent to all of the devices containing the specified tag name.

n <group path="{group name}"/>
When included in an SCI request, this element specifies a particular group name. Requests
issued will be sent to each of the devices contained within the specified group.

Note Each element under Targets can be thought of as an OR statement, thus you can specify
multiple group paths, and it will effect each path specified.

Synchronous requests
To send a synchronous request using a device ID:
POST the following to: /ws/sci

<!-- common to every sci request -->
<sci_request version="1.0">

<!-- indicates we want to send an rci request -->
<send_message>

<!-- preparing us for the list of who to operate on -->
<targets>

<!-- we will send it to this device -->
<device id="00000000-00000000-00000000-00000000" />

</targets>
<!-- the payload for the send_message command, an rci request -->

SCI (Server command interface)

Digi Remote Manager Programmer Guide 152

<rci_request version="1.1">
<query_state>

<device_stats />
</query_state>

</rci_request>
</send_message>

</sci_request>

which returns when the operation has completed (or timed out) and the body of the response will be:

<sci_reply version="1.0">
<!-- start of the sci response -->
<send_message>
<!-- the "operation" of our sci_request -->
<device id="00000000-00000000-00000000-00000000">

<!-- contains the response for this device -->
<rci_reply version="1.1">

<!-- the rci response for the particular device -->
<query_state>

<device_stats>
<cpu>36</cpu>
<uptime>152</uptime>
<datetime>Thu Jan 1 00:02:32 1970 (based on uptime)</datetime>
<totalmem>8388608</totalmem>
<usedmem>5811772</usedmem>
<freemem>2576836</freemem>

</device_stats>
</query_state>

</rci_reply>
</device>

</send_message>

To send a synchronous request using a group path:
POST the following to /ws/sci

<!-- common to every sci request -->
<sci_request version="1.0">

<!-- indicates we want to send an rci request -->
<send_message>

<!-- preparing us for the list of who to operate on -->
<targets>

<!-- we will send it to this group -->
<group path="group1" />

</targets>
<!-- the payload for the send_message command, an rci request -->
<rci_request version="1.1">

<query_state>
<device_stats />

</query_state>
</rci_request>

</send_message>
</sci_request>

which will return when the operation has completed (or timed out) and the body of the response will
be:

Note The return will contain a response for each device included within the specified group.

SCI (Server command interface)

Digi Remote Manager Programmer Guide 153

<sci_reply version="1.0">
<!-- start of the sci response -->
<send_message>
<!-- the "operation" of our sci_request -->
<device id="00000000-00000000-00000000-00000001">

<!-- contains the response for the first device in the specified group
-->

<rci_reply version="1.1">
<!-- the rci response for the first device in the specified group -->
<query_state>

<device_stats>
<cpu>22</cpu>
<uptime>237565</uptime>
<totalmem>8388608</totalmem>
<usedmem>7136532</usedmem>
<freemem>1252076</freemem>

</device_stats>
</query_state>

</rci_reply>
</device>
<device id="00000000-00000000-00000000-00000002">

<!-- contains the response for the second device in the specified group
-->

<rci_reply version="1.1">
<!-- the rci response for the second device in the specified group --

>
<query_state>

<device_stats>
<cpu>42</cpu>
<uptime>438054</uptime>
<datetime>Mon Jun 28 19:36:29 2010</datetime>
<totalmem>8388608</totalmem>
<usedmem>8165060</usedmem>
<freemem>223548</freemem>

</device_stats>
</query_state>

</rci_reply>
</device>

</send_message>
<sci_request>

To send a synchronous request using a device tag:
POST the following to: http://remotemanager.digi.com/ws/sci

<!-- common to every sci request -->
<sci_request version="1.0">
<!-- indicates we want to send an rci request -->
<send_message>

<!-- preparing us for the list of who to operate on -->
<targets>

<!-- we will send it all devices that have this tag -->
<device tag="tag1" />

</targets>
<!-- the payload for the send_message command, an rci request -->
<rci_request version="1.1">

<query_state>
<device_stats />

</query_state>
</rci_request>

SCI (Server command interface)

Digi Remote Manager Programmer Guide 154

</send_message>
</sci_request>

which will return when the operation has completed (or timed out) containing responses from all of
the devices matching the specified tag.

Asynchronous request
SCI requests that are asynchronous return without waiting for the request to finish, and return a job
ID that can be used to retrieve the status and results later.
If you POST an SCI request asynchronously and want to see the results, the general flow is:
POST the SCI request.

if rc=202 // The job is accepted
get the location from the response header or the job ID from the response

content
rc = HEAD location
while rc!=200

sleep for a number of seconds
rc = HEAD location

GET location
process your results
DELETE location

Performing an Asynchronous Request
A synchronous request is performed by specifying synchronous="false" in the element specifying the
operation in the request, e.g.: <send_message synchronous="false">

the response then has the form:

<sci_reply version="1.0">
<send_message>

<jobId>{job_id}</jobId>
</send_message>

</sci_reply>

where job_id identifies the request you submitted.

Retrieve Status
You can retrieve the status for a particular request, or retrieve information about submitted requests
overall.

Status for a Particular Job
Do an HTTP GET on http://remotemanager.digi.com/ws/sci/{job_id}
To determine if a job is complete, do an HTTP HEAD specifying the job ID;
http://remotemanager.digi.com/ws/sci/601358. A return code of 200 means the job is complete.

Overall Status of Outstanding Jobs
Do an HTTP GET on /ws/sci, and you will get a response that looks like:

<result>
<resultTotalRows>1</resultTotalRows>
<requestedStartRow>0</requestedStartRow>

SCI (Server command interface)

Digi Remote Manager Programmer Guide 155

<resultSize>1</resultSize>
<requestedSize>1000</requestedSize>
<remainingSize>0</remainingSize>
<Job>

<jobId>601358</jobId>
<cstId>0</cstId>
<usrId>0</usrId>
<jobType>0</jobType>
<jobSyncMode>0</jobSyncMode>
<jobReplyMode>0</jobReplyMode>
<jobTargets>00000000-00000000-0004F3FF-00000000</jobTargets>
<jobRequestPayload><rci_request><query_setting/></rci_

request></jobRequestPayload>
<jobDescription>query_setting</jobDescription>
<jobStatus>2</jobStatus>
<jobTargetCount>1</jobTargetCount>
<jobProgressSuccess>1</jobProgressSuccess>
<jobProgressFailures>0</jobProgressFailures>
<jobSubmitTime>2010-03-02T15:36:22Z</jobSubmitTime>
<jobCompletionTime>2010-03-02T15:36:22Z</jobCompletionTime>

</Job>
</result>

where jobId is the ID for the request.
jobType is the type of the job (0: send_message, 1: update_firmware, 2: disconnect).
jobSyncMode indicates if the job is synchronous (0: synchronous, 1: asynchronous).
jobReplyMode indicates the reply mode (0: all, 1: none, 2: only), where only means only return errors.
jobStatus is the current status of the job (0: new, 1: in_progress, 2: complete, 3: canceled).
jobTargetCount is the number of devices the job is targeted for.
jobProgressSuccess is the number of devices that have completed the operation successfully.
jobProgressFailures is the number of devices that have completed the operation with an error.

Retrieve Progress
You can retrieve the progress for a particular SCI job by specifying the progress=true parameter. For
example:

HTTP GET https://remotemanager.digi.com/ws/sci/{job_id}?progress=true

This will return the current progress (percent completion) for an SCI job, as well as its progress
history. For example, let’s assume we have an SCI job that is performing a firmware update on two
different devices. Performing the query shown above will give a response that looks something like:

<sci_reply version="1.0">
<status>in_progress</status>
<update_firmware>

<device id="00000000-00000000-000000FF- FF000001">
<progress time="Mon Nov 28 21:30:25 UTC 2011" status="0">Getting Target

Info</progress>
<progress time="Mon Nov 28 21:30:27 UTC 2011" status="0">Sending

Download Request</progress>
<progress time="Mon Nov 28 21:31:15 UTC 2011" status="5">Sending Data:

156672 out of 3130662 bytes sent</progress>
<progress time="Mon Nov 28 21:32:07 UTC 2011" status="10">Sending Data:

313344 out of 3130662 bytes sent</progress>
</device>
<device id="00000000-00000000-000000FF- FF000002">

<progress time="Mon Nov 28 21:30:26 UTC 2011" status="0">Getting Target

SCI (Server command interface)

Digi Remote Manager Programmer Guide 156

Info</progress>
<progress time="Mon Nov 28 21:30:27 UTC 2011" status="0">Sending

Download Request</progress>
<progress time="Mon Nov 28 21:31:05 UTC 2011" status="5">Sending Data:

156672 out of 3130662 bytes sent</progress>
<progress time="Mon Nov 28 21:31:48 UTC 2011" status="10">Sending Data:

313344 out of 3130662 bytes sent</progress>
<progress time="Mon Nov 28 21:32:30 UTC 2011" status="15">Sending Data:

470016 out of 3130662 bytes sent</progress>
</device>

</update_firmware>
</sci_reply>

We can also query for job progress on other types of SCI jobs, including file uploads through the File
System service. Progress updates for file uploads through RCI is not supported.

Cancel a Request or Delete the Results
Do an HTTP DELETE on https://remotemanager.digi.com/ws/sci/{job id}
This will attempt to cancel the request. Some parts of the request may have already completed, and
parts of the request that are in progress may continue to completion, but it should prevent any
operations that have not yet begun from starting.

Ping request
You can use the ping command to determine the round trip latency of a device connection. The result
gives the actual time used to send a simple command to the device and receive a reply.
You can ping a device using the following SCI request.

<sci_request version="1.0">
<ping>

<targets>
<device id="00000000-00000000-00042DFF-FF04A85A"/>

</targets>
</ping>

</sci_request>

The sample response contains the actual time used to send a simple command to the device and
receive a reply.

<sci_reply version="1.0">
<ping>

<device>
<device id="00000000-00000000-00042DFF-FF04A85A">
<time>
<device units="ms">5</device>

</time>
</device>

</ping>
</sci_reply>

Available operators
Available operators include:

send_message allows an RCI request to be sent to the device (or the server cache).

SCI (Server command interface)

Digi Remote Manager Programmer Guide 157

update_firmware updates the firmware of the device.
disconnect sends a request to the device to disconnect from the server.
query_firmware_targets gets a list of firmware targets on the device.
file_system is used to interact with files on a device. This interface is for use with
devices supporting the file_system service (as opposed to other devices that support
file_system interaction through RCI requests.) The RCI do_command for file_system is
only supported by older devices not implementing the file_system service.
data_service sends messages to devices over the data service.
reboot issues a reboot for a device.
There are a few attributes that can be specified for an operation that can specify the
behavior. They include:

<{operation_name} reply="all|errors|none">
<{operation_name} synchronous="true|false">
<{operation_name} syncTimeout="xxx">
<{operation_name} cache="true|false|only">
<{operation_name} allowOffline="true|false">
<{operation_name} waitForReconnect="true|false">

reply determines how much information should be saved in the response to a request.

all (default) means that everything should be saved.
errors implies that only errors in the response should be kept, while success messages
should not be saved.
none means that result data for the operation should not be saved.

errors is useful if you are performing an operation and only want to see error information that
occurred, such as when setting settings, or performing firmware update. none is useful when you
aren’t concerned with the reply at all. If you are performing a synchronous request because you want
to wait until the operation is complete, but do not want to receive a lot of data in the reply, this would
accomplish that.
synchronous determines whether the request should be sent synchronously (default), or
asynchronously (false).
syncTimeout is applicable for a synchronous request and determines how long to wait for the request
to complete (in seconds) before an error is returned. The default changes based on the type. The
overall timeout for the SCI request will be the accumulation of all operations combined. Unless
overridden with syncTimeout, the timeouts on send_message commands are as follows:

operation timeout

default 1 min

do_command target="file_system" 10 min

do_command target="zigbee" 5 min

firmware update 5 min

cache determines if the request should be processed on the server if possible, or always sent to the
device. Options include:

SCI (Server command interface)

Digi Remote Manager Programmer Guide 158

n true (default) means that if possible, the request will be processed from the server cache
without being sent to the device. If it cannot, it will be sent to the device.

n false means that the request will bypass the server cache and be sent to the device.
n only means that the request should only be processed by the server cache and will never be

sent to the device, even if the server is not capable of servicing the request.

allowOffline determines if this should be an offline operation. Offline operations enable you to send a
request to a device that is currently disconnected. If the device is already connected, then Remote
Manager will execute the command right away. If the device is not connected, then Remote Manager
will execute the command as soon as the device connects to Remote Manager. Offline requests can
be specified by setting the allowOffline attribute to "true".
NOTES:

n By default, SCI requests are synchronous. For offline operations, it is recommended to use an
asynchronous request by setting the synchronous attribute to "false".

n Asynchronous offline operations will timeout after 7 days.
n If for some reason the device disconnects during processing, the operation will automatically

be retried again the next time the device connects. Offline operations will be retried up to 5
times before failing.

waitForReconnect allows the completion of a command to depend on a device reconnecting. For
example, normally sending a reboot command to a device would result in the command being marked
as successfully completed as soon as the device acknowledges the reboot request. However, in many
instances, it may make sense to wait to mark the command as successful until the device reconnects
to Remote Manager. In such cases, this can be achieved by setting the waitForReconnect attribute to
"true".
Warning: Many commands do not result in the device disconnecting and reconnecting to Remote
Manager, meaning that improper use of this setting could result in the request taking an indefinite
amount of time to complete; use caution when using this setting.

send_message
This is used to send an RCI request to a device. The reply will contain the response from the devices or
groups of devices, or any error messages. A device ID of all will cause the RCI request to be sent to all
devices available to the user.
One of the main uses of RCI requests are to interact with the settings and state of a device. Remote
Manager keeps a cache of the latest settings and state that it has received from a device, and this
makes it possible to retrieve information about the state or settings of a device without having to go
to the device.
The format of the send_message command is as follows:

<sci_request version="1.0">
<send_message>

<targets>{targets}</targets>
<rci_request version="1.1">

<!-- actual rci request -->
</rci_request>

</send_message>
</sci_request>

query_setting
Request for device settings. May contain setting group elements to subset query (only setting group
subset supported. Subsetting below this level not supported).

SCI (Server command interface)

Digi Remote Manager Programmer Guide 159

Returns requested config settings. Requests specifying no settings groups (e.g. return all settings).

set_setting
Set settings specified in setting element. Settings data required.
Empty setting groups in reply indicate success. Errors returned as error or warning elements.

query_state
Request current device state such as statistics and status. Sub-element may be supplied to subset
results.
Returns requested state. Requests specifying no groups (e.g. return all state).
Example:

<query_state>
<device_stats/>

</query_state>

reboot
Reboots device immediately.

do_command
The do_command is a child element of an RCI Request that is executed differently based on the value
of its target attribute. Note that the command may not be supported for use with your device. See the
file_system service.
Python
You can add callbacks to unhandled do_commands target via the rci python module on a device.
File System The file_system commands are accessed via the do_command of an rci request.
ls
Reports all files in a given directory.
Attributes:

n dir the path in which to list available files

Example:

<rci_request version="1.1">
<do_command target="file_system">
<ls dir="/WEB/python"/>

</do_command>
</rci_request>

returns

<rci_reply version="1.1">
<do_command target="file_system">
<ls dir="/WEB/python">
<file name="python.zip" size="144321"/>
<file name="digi_daq.zip" size="458980"/>
<file name="digi_daq.yml" size="5270"/>
<file name="digi_daq.py" size="6387"/>
<file name="zigbee.py" size="1147"/>
</ls>
</do_command>
</rci_reply>

SCI (Server command interface)

Digi Remote Manager Programmer Guide 160

get_file
Returns the base 64 encoded raw data from a file in the file system denoted by the name attribute.
Attributes:

n name path and destination filename for the file

Example:

<rci_request version="1.1">
<do_command target="file_system">
<get_file name="/WEB/python/python.zip"/>

</do_command>
</rci_request>

returns

<rci_reply version="1.1">
<do_command target="file_system">

<get_file name="/WEB/python/python.zip">
<data>UEs...KYmwaR</data>

</get_file>
</do_command>

</rci_reply>

put_file
Uploads a base 64 encoded file onto the device.
Attributes:

n name path and destination filename for the file

Example:

<put_file name="/WEB/destination.txt">
<data>BASE64DATA</data>

</put_file>

rm
Removes a given file.
Attributes:

n name path and destination filename for the file

Example:

<rm name="/WEB/python/somefile.py"/>

Zigbee
The zigbee rci command interacts with an xbee module.
ZigBee Discover
Returns back a list of discovered nodes, with the first indexed node being the node in the gateway.
Optional attributes:

n start says the rci should return the nodes whose index is >= start. For some reason, if start > 1,
the Gateway will return this list from cache, and not perform an actual discovery.

n size Determines number of nodes to return

SCI (Server command interface)

Digi Remote Manager Programmer Guide 161

n clear If this is set to "clear", it forces a clearing of the device’s cache, and will always perform a
discover to get fresh results

Example:

<do_command target="zigbee">
<discover start="1" size="10" option="clear"/>

</do_command>

ZigBee Query Setting
Returns back a detailed list of settings for a given radio
Optional attribute:

n addr 64 bit address of the node to retrieve settings for. If omitted, defaults to gateway node

Example:

<do_command target="zigbee">
<query_setting addr="00:13:a2:00:40:34:0c:88!"/>

</do_command>

ZigBee Query State
This is identical to query_setting, except it returns back different fields.
ZigBee Set Setting
Basically the reverse of query_setting, so you can set settings for a particular node
Optional attributes:

n addr 64 bit address of node to set settings for. If omitted, defaults to gateway node

Example:

<do_command target="zigbee">
<set_setting addr="00:13:a2:00:40:34:0c:88!">

<radio>
<field1>value1</field1>
...
<fieldn>valuen</fieldn>

</radio>
</set_setting>
</do_command>

ZigBee Firmware Update
Updates the firmware of the radio in the gateway
Required attribute:

n file Path to a firmware file which must already exist on the gateway

Example:

<do_command target="zigbee">
<fw_update file="/WEB/firmware_file"/>

</do_command>

update_firmware
This is used to update the firmware of one or more devices. The firmware image can be hosted in your
Data Services directory on Remote Manager, or can be Base64 encoded and placed in a data element

SCI (Server command interface)

Digi Remote Manager Programmer Guide 162

within the update firmware command. The response marks each device as either submitted or failed.
A response of "Submitted" means the process to send the firmware and update request to Remote
Manager completed successfully.
It is still possible for the process to fail between Remote Manager and the device. You will need to go
back and verify that the device firmware version has actually changed. You can do this by using the
DeviceCore request defined earlier. You may also use the RCI command "query_state".
There are optional attributes filename, and firmware_target, which are included with the update_
firmware element.
filename needs to be specified if your target device supports multiple targets that can be updated in
order to choose which to upgrade. These will match patterns specified by the device which can be
discovered using the query_firmware_targets command.
firmware_target can be used to bypass the filename matching and force an upgrade on a particular
target.
A request using a Base64 encoded file looks like:

<sci_request version="1.0">
<update_firmware filename="abcd.bin">

<targets>{targets}</targets>
<data>{base64 encoded firmware image}</data>

</update_firmware>
</sci_request>

and the reply looks like:

<sci_reply version="1.0">
<update_firmware>

<device id="00000000-00000000-00000000-000000">
<submitted />

</device>
</update_firmware>

</sci_reply>

To do the update operation with a file stored in Remote Manager Data Services, use the <file>
attribute:

<sci_request version="1.0">
<update_firmware filename="abcd.bin">

<targets>
{targets}

</targets>
<file>~/firmware/abcd.bin</file>

</update_firmware>
</sci_request>

The above example assumes that you created a directory called "firmware" off the root of your home
directory in Data Services. "~" is an alias to the home directory of your account.

disconnect
Disconnect is used to indicate that a device should disconnect from the server. Based on the device’s
configuration, it will likely reconnect.
A request follows this format:

<sci_request version="1.0">
<disconnect>

<targets>{targets}</targets>

SCI (Server command interface)

Digi Remote Manager Programmer Guide 163

</disconnect>
</sci_request>

and a response looks like:

<sci_reply version="1.0">
<disconnect>

<device id="00000000-00000000-00000000-00000000">
<disconnected />

</device>
</disconnect>

</sci_reply>

query_firmware_targets
Query Firmware Targets is used to retrieve information about the upgradeable firmware targets of a
device. It will return the target number, name, version, and code size. A pattern may also be returned
in the response which indicates a regular expression that is used to determine the appropriate target
for a given filename.
A request follows this format:

<sci_request version="1.0">
<query_firmware_targets>

<targets>{targets}</targets>
</query_firmware_targets>

</sci_request>

and a response looks like:

<sci_reply version="1.0">
<query_firmware_targets>

<device id="00000000-00000000-00000000-00000000">
<targets>

<target number="0">
<name>Firmware Image</name>
<pattern>image\.bin</pattern>
<version>7.5.0.11</version>
<code_size>2162688</code_size>

</target>
<target number="1">

<name>Bootloader</name>
<pattern>rom\.bin</pattern>
<version>0.0.7.5</version>
<code_size>65536</code_size>

</target>
<target number="2">

<name>Backup Image</name>
<pattern>backup\.bin</pattern>
<version>7.5.0.11</version>
<code_size>1638400</code_size>

</target>
</targets>

</device>
</query_firmware_targets>

</sci_reply>

SCI (Server command interface)

Digi Remote Manager Programmer Guide 164

file_system
The file system command is used to interact with files on a device. This interface is for use with
devices supporting the file system service (as opposed to other devices which support file system
interaction through RCI requests).
Commands have the following general format:

<sci_request version="1.0">
<file_system>

<targets>{targets}</targets>
<commands>{one or more file_system commands}</commands>

</file_system>
</sci_request>

Support file system commands are as follows:

put_file
The put_file command is used to push new files to a device, or optionally write chunks to an existing
file.

n path is a required attribute giving the file to write to.
n offset is an optional attribute specifying the position in an existing file to start writing at.
n truncate is an optional attribute indicating the file should be truncated to the last position of

this put.

The payload is specified in one of two ways:

1. Child element data with the payload Base64 encoded
2. Child element file with a path to a file in storage to send

Example:
A put file operation using a file on the server as the source for the data. The contents will be inserted
into the file /path_to/write1.ext, as offset 200. It is set to not truncate the file if it extends beyond the
length of written data.

<sci_request version="1.0">
<file_system>

<targets>
<device id="00000000-00000000-00000000-00000000" />

</targets>
<commands>

<put_file path="/path_to/write1.ext" offset="200" truncate="false">
<file>~/referencedfilename.xml</file>

</put_file>
</commands>

</file_system>
</sci_request>

A put file with the data Base64 encoded and embedded in the request under the data element. Offset
and truncate are not specified, so this example will create a new file if one does not exist, or overwrite
an existing one.

<sci_request version="1.0">
<file_system>

<targets>
<device id="00000000-00000000-00000000-00000000" />

</targets>

SCI (Server command interface)

Digi Remote Manager Programmer Guide 165

<commands>
<put_file path="/path_to/write2.ext">

<data>ZmlsZSBjb250ZW50cw==</data>
</put_file>

</commands>
</file_system>

</sci_request>

get_file
The get_file command is used to retrieve a file from the device, either in its entirety or in chunks.
There is currently a restriction such that the maximum retrieval size is 512KB. As a result, files greater
than this size will have to be retrieved in chunks.

n path is a required attribute giving the file to retrieve.
n offset is an optional attribute specifying the position to start retrieving from.
n length is an optional attribute indicating the length of the chunk to retrieve.

Example:
The get file in this example will retrieve 64 bytes starting at offset 100 from the file /path_to/file.ext.
Leaving off offset and length would cause the full file to be retrieved.

<sci_request version="1.0">
<file_system>

<targets>
<device id="00000000-00000000-00000000-00000000" />

</targets>
<commands>

<get_file path="/path_to/file.ext" offset="100" length="64" />
</commands>

</file_system>
</sci_request>

ls
The ls command is used to retrieve file listings and details.

n path is a required attribute specifying where to get file details for.
n hash is an optional attribute which indicates a hash over the file contents should be retrieved.

Values include none, any, md5, sha-512, and sha3-512. Use any to indicate the device should
choose its best available hash. (If you specify md5, sha-512, or sha3-512, the device may not
support the hash or any hash mechanism).

Example:
This ls request will return a listing of the contents of /path_to_list. By specifying hash="any", the
response will include the most optimal hash available, if any. Leaving off the hash attribute will default
it to none.

<sci_request version="1.0">
<file_system>

<targets>
<device id="00000000-00000000-00000000-00000000" />

</targets>
<commands>

<ls path="/path_to_list" hash="any" />
</commands>

SCI (Server command interface)

Digi Remote Manager Programmer Guide 166

</file_system>
</sci_request>

rm
The rm command is used to remove files.

n path is a required attribute specifying the location to remove.

Example:
This rm request will attempt to delete /path_to/file.ext

<sci_request version="1.0">
<file_system>

<targets>
<device id="00000000-00000000-00000000-00000000" />

</targets>
<commands>

<rm path="/path_to/file.ext" />
</commands>

</file_system>
</sci_request>

data_service
A new subcommand in SCI is now supported to send messages to a device over the data service. The
command element is data_service, and it must contain an element requests. The requests element
contains a device_request element, with required attribute target_name and optional attribute
format. target_name specifies the data service target the request will be sent to. The text data
contained in the device_request element is used as the payload for the request. If format is not
specified, the content will be sent as text. If format="base64" is specified, the content will be Base64
decoded and sent to the target as a binary payload.
Example of text payload

<data_service>
<targets>

<device id="00000000-00000000-00000000-00000000" />
</targets>
<requests>

<device_request target_name="myTarget">my payload string</device_request>
</requests>

</data_service>

Example of binary payload

<data_service>
<targets>

<device id="00000000-00000000-00000000-00000000" />
</targets>
<requests>

<device_request target_name="myBinaryTarget"
format="base64">YmluYXJ5ZGF0YS4uLg==</device_request>

</requests>
</data_service>

reboot
Reboot is used to issue a reboot for a device. The majority of devices may not support this operation,
and will instead support reboot through RCI. This option exists as an alternative for devices that may

SCI (Server command interface)

Digi Remote Manager Programmer Guide 167

not support RCI.
Example:

<reboot>
<targets>

<device id="00000000-00000000-00000000-00000000" />
</targets>

</reboot>

SMS messages
There are two types of SMS data:

n Data: Data SMS messages are sent from the device using the python function idigisms_send()
and the messages are stored in FileData (see FileData). Data from the device is stored as a file
in storage:
l Python programs specify the data contents and optionally the file name, called the path in

idigisms_send().
l If a path is not specified, the file is stored with the name SmsUnnamed. If the fdArchive

option is true, the file is archived.
n DIA data: Remote Manager parses DIA messages and adds the parsed messages to the DIA

data specific storage or as a file in generic storage depending on whether the device has a DIA
Data Management service subscription (see DIA (device integration application)).

Sending SMS messages using web services
Remote Manager sends SMS requests to registered devices using the SCI (Server Command
Interface) web service, and the messages are handled in a manner similar to RCI (Remote Command
Interface) messages.

n For more information on SCI, see SCI (Server command interface).
n For more information on RCI, see Remote Command Interface (RCI) specification.

To send an SMS message using the Remote Manager SCI web service, specify the message as a child
of the of the SCI <send_message> operation using the <sms> tag as a child element. Remote
Manager creates a job for each web services request, and the job can be synchronous or
asynchronous. You can retrieve Remote Manager job results the same way as you retrieve results for
RCI jobs.

Send message options and SMS messages
Use the following <send_message> options to control how Remote Manager handles SMS message
requests:

n synchTimeout = "xxx"
Behavior is identical to existing SCI requests.

n reply = "all | errors | none"
Controls whether a reply is sent by the device back to the server for a command. Using this
option, you can control the number of Remote Manager SMS messages directly sent. The
default is none. Note that all and errors work the same way for all SCI requests, including SMS
message requests.

n cache = "true | false | only"
Remote Manager does not currently service SMS requests from the cache. Therefore,

SCI (Server command interface)

Digi Remote Manager Programmer Guide 168

specifying only returns an error. In addition, true or false result in the request being sent to
the device. The default is false.

SMS command children

Command Description

ping Ping the device via SMS to determine whether device can receive SMS messages.
No parameters.

provision Configure the device with the Remote Manager server telephone number and
optionally the service ID. The restrict sender flag must be off in the device for
this command. No parameters.

raw Send raw SMS message from the device with no modification from Remote
Manager. This is useful in cases when customers wish to use every byte of the
SMS message (Remote Manager protocol takes approximately 5 bytes per
message of overhead) or when using a device that doesn't have Remote Manager
protocol support but does have SMS support.

SMS raw messages can be a maximum of 160 characters. The supported
characters are dependent on your carrier, but are character only (not binary).
They are not guaranteed to be delivered, may be delivered more than once, and
are not guaranteed to be correct (they are subject to corruption).

reboot Reboot the device immediately. No parameters.

request_
connect

Request a Remote Manager data connection. If a connection has already been
made, forces a reconnect of the management session. No parameters.

command Send a command. Options include:

maxResponseSize='''''

Set maximum size of the response. If the response is larger than the
maxResponseSize, the response is truncated. The value is the number of SMS
messages that make up the response.

This is an optional parameter. If not specified, the size of the response is
determined by the device.

user_msg Send a message to a registered listener in python. This command is similar to the
RCI do_command custom target command.

path='''''

Send requests to a specific listener. If this optional parameter is omitted, the
message is delivered to the listener on the device that is registered to the null
path.

dia Send a DIA command to the running DIA instance. The format of this request is
documented in the DIA SMS presentation documentation.

SCI (Server command interface)

Digi Remote Manager Programmer Guide 169

Command Description

Optional
attribute for the
above
commands

format="base64|text"

Set the encoding of the request to Base64 or text: use base64 for Base64
encoding; use text for plain text. The default format is text. All subcommands (cli,
user_msg, and so on) support the format="base64|text" attribute.

If the server detects characters that will cause the response to be invalid XML, it
encodes the response in Base64 and indicates this with the format="base64"
attribute. That is, even if a request uses format="text", the reply may have
format="base64" set.

Using SMS to send a request connect
You can use Remote Manager to send an SMS request connect message to a Remote Manager-
registered device to cause the device to connect back to the server using the device-initiated
connection method over TCP/IP. Once the device is connected, you can initiate web services requests
and Remote Manager UI actions for the device. In this way, devices do not need to maintain a Remote
Manager connection at all times. Instead, connections can be established dynamically as needed.

Provision device for SMS
To use SMS with a device, Remote Manager needs the telephone number of the device. Typically,
when a registered device connects for the first time, the telephone number is read from the device
and automatically provisioned. However, there are cases where auto-provisioning does not occur. For
example, a device connects for the first time and cellular is not yet configured or a device is
provisioned before connecting to Remote Manager. In these cases, you must manually provision the
device with the telephone number.
To provision the telephone number for a Remote Manager-registered device, the telephone number
must be added to an entry in the NetworkInterface that represents a SIM installed on the device. To
provision a device, follow these general steps:
Step1: Retrieve the telephone number from a device
Step 2: Find the NetworkInterface record for the device
Step 3: Update NetworkInterface record
Wait for Device to Connect

Step1: Retrieve the telephone number from a device
You can retrieve the telephone number of the device using the following RCI request. The sample
response contains the telephone number of the device (phnum):

<rci_request version="1.1">
<query_state>

<mobile_stats />
</query_state>

</rci_request>
<rci_reply version="1.1">

<query_state>
<mobile_stats>

<mobile_version>1.1</mobile_version>
<modemtype>GSM</modemtype>
<rssi>-42</rssi>
<quality max="5">5</quality>

SCI (Server command interface)

Digi Remote Manager Programmer Guide 170

<g3rssi>0</g3rssi>
<g3quality max="5">0</g3quality>
<rstat code="1">Registered (Home Network)</rstat>
<cid>34016</cid>
<lac>32004</lac>
<imsi>310410316937398</imsi>
<iccid>89014104243169373988</iccid>
<phnum>19522213895</phnum> <!-- phone number of the device -->
<manuf>SIEMENS</manuf>
<model>TC63</model>
<sn>355633002498656</sn>
<rev>REVISION 02.000</rev>
<varinfo index="1">

<desc>Network Name</desc>
<data>N/A</data>

</varinfo>
<varinfo index="2">

<desc>(E)GPRS Status</desc>
<data>GPRS Attached</data>

</varinfo>
<varinfo index="3">

<desc>Current Band</desc>
<data>850 MHz, 1900 MHz</data>

</varinfo>
<varinfo index="4">

<desc>User Band Selection</desc>
<data>Automatic</data>

</varinfo>
<varinfo index="5">

<desc>Mobile Channel</desc>
<data>235</data>

</varinfo>
<varinfo index="6">

<desc>Mobile Country Code</desc>
<data>310</data>

</varinfo>
<varinfo index="7">

<desc>Mobile Network Code</desc>
<data>410</data>

</varinfo>
<varinfo index="8">

<desc>User Carrier Selection</desc>
<data>Automatic</data>

</varinfo>
<varinfo index="9">

<desc>PLMN Color</desc>
<data>3</data>

</varinfo>
<varinfo index="10">

<desc>Base Station Color</desc>
96
<data>5</data>

</varinfo>
<varinfo index="11">

<desc>Max Power RACH</desc>
<data>0</data>

</varinfo>
<varinfo index="12">

<desc>Min Rx Level</desc>

SCI (Server command interface)

Digi Remote Manager Programmer Guide 171

<data>-111</data>
</varinfo>
<varinfo index="13">

<desc>Base Coefficient</desc>
<data>68</data>

</varinfo>
<varinfo index="14">

<desc>SIM Status</desc>
<data>5: SIM Initialization Complete</data>

</varinfo>
<varinfo index="15">

<desc>SIM PIN Status</desc>
<data>Ready</data>

</varinfo>
<stats_index>5</stats_index>
<multi_sim_enabled>no</multi_sim_enabled>

</mobile_stats>
</query_state>

</rci_reply>

Step 2: Find the NetworkInterface record for the device

Note The information within this step only applies to configurations that have an existing entry in
NetworkInterface record to update. If you perform the GET below and determine that your
configuration does not have a niId value, skip this step and proceed to step 4.

To find the NetworkInterface record to update for your Remote Manager-registered device, perform a
GET similar to the following:

GET /ws/DeviceInterface/?condition=devConnectwareId='00000000-00000000-00409DFF-
FF2EB94D'

Replace '00000000-00000000-00409DFF-FF2EB94D' with the device ID of your device.
Here is a sample reply:

<result>
<resultTotalRows>3</resultTotalRows>
<requestedStartRow>0</requestedStartRow>
<resultSize>1</resultSize>
<requestedSize>1000</requestedSize>
<remainingSize>0</remainingSize>
<DeviceInterface>

<id>
<devId>6</devId>
<devVersion>0</devVersion>
<niId>26</niId>
<niVersion>0</niVersion>

</id>
<devRecordStartDate>2011-01-13T18:22:00Z</devRecordStartDate>
<devMac>00:40:9D:2E:B9:4D</devMac>
<devCellularModemId>355633002498656</devCellularModemId>
<devConnectwareId>00000000-00000000-00409DFF-FF2EB94D</devConnectwareId>
<cstId>10</cstId>
<grpId>10</grpId>
<devEffectiveStartDate>2011-01-05T21:37:00Z</devEffectiveStartDate>
<devTerminated>false</devTerminated>
<niRecordStartDate>2011-02-15T21:45:00Z</niRecordStartDate>

SCI (Server command interface)

Digi Remote Manager Programmer Guide 172

<niInterfaceType>0</niInterfaceType>
<niEffectiveStartDate>2011-02-15T20:25:00Z</niEffectiveStartDate>
<niTerminated>false</niTerminated>
<niPhone>N/A</niPhone>
<niActivePhone>false</niActivePhone>
<niIdigiPhone>32075</niIdigiPhone>

</DeviceInterface>
</result>

Within the result, find the nild of the NetworkInterface record to be updated. In the above example,
the nild is 26. Use the niId to retrieve the NetworkInterface record:

/ws/NetworkInterface/26/0 (replace with your device's niId, 0 means most recent
version)

<result>
<resultTotalRows>1</resultTotalRows>
<requestedStartRow>0</requestedStartRow>
<resultSize>1</resultSize>
<requestedSize>1000</requestedSize>
<remainingSize>0</remainingSize>
<NetworkInterface>

<id>
<niId>26</niId>
<niVersion>0</niVersion>

</id>
<niRecordStartDate>2011-02-15T21:45:00Z</niRecordStartDate>
<devId>6</devId>
<devVersion>0</devVersion>
<niInterfaceType>0</niInterfaceType>
<cstId>10</cstId>
<grpId>10</grpId>
<niEffectiveStartDate>2011-02-15T20:25:00Z</niEffectiveStartDate>
<niTerminated>false</niTerminated>
<niPhone>N/A</niPhone>
<niPhoneCarrier>3</niPhoneCarrier>
<niActivePhone>false</niActivePhone>
<niIdigiPhone>32075</niIdigiPhone>
<niIdigiServiceId>idgv</niIdigiServiceId>

</NetworkInterface>
</result>

Step 3: Update NetworkInterface record
To update the NetworkInterface record with the device Modem ID, copy the contents of
<NetworkInterface> from the GET above. Update the niPhone tag with the phone number you
discovered in Step1: Retrieve the telephone number from a device (replace N/A with your device
phone number). Change the status of niActivePhone and then remove the id tag.
The values added below are:
niActivePhone: true (to indicate this is the active Remote Manager SMS record. There can be more
than one NetworkInterface record per device. Only one can have niActivePhone true).
niPhone: The phone number of the SIM (discovered in step 1).

PUT /ws/NetworkInterface/26

<?xml version="1.0" encoding="UTF-8"?>
<NetworkInterface>

SCI (Server command interface)

Digi Remote Manager Programmer Guide 173

<niRecordStartDate>2011-02-15T21:45:00Z</niRecordStartDate>
<devId>6</devId>
<devVersion>0</devVersion>
<niInterfaceType>0</niInterfaceType>
<cstId>10</cstId>
<grpId>10</grpId>
<niEffectiveStartDate>2011-02-15T20:25:00Z</niEffectiveStartDate>
<niTerminated>false</niTerminated>
<niPhone>19522213895</niPhone>
<niActivePhone>true</niActivePhone>

</NetworkInterface>

Step 4: Configure phone number without an existing NetworkInterface record

Note The information within this step only applies to configurations that do not have an existing entry
in NetworkInterface to update (as described in step 2).

Find the the devId for your Remote Manager-registered device (indicated in the example below):
Perform a GET on /ws/DeviceCore?condition=devConnectwareId='00000000-00000000-00409DFF-
FF4A3946' (replace with your device ID).

<?xml version="1.0" encoding="UTF-8"?>
<result>

<resultTotalRows>1</resultTotalRows>
<requestedStartRow>0</requestedStartRow>
<resultSize>1</resultSize>
<requestedSize>1000</requestedSize>
<remainingSize>0</remainingSize>
<DeviceCore>

<id>
<devId>1224</devId> <!-- devId of the device -->
<devVersion>28</devVersion>

</id>
<devRecordStartDate>2011-12-20T20:34:00.000Z</devRecordStartDate>
<devMac>00:40:9D:4A:39:46</devMac>
<devCellularModemId>357975020409993</devCellularModemId>
<devConnectwareId>00000000-00000000-00409DFF-FF4A3946</devConnectwareId>
<cstId>27</cstId>
<grpId>27</grpId>
<devEffectiveStartDate>2011-12-20T20:23:00.000Z</devEffectiveStartDate>
<devTerminated>false</devTerminated>
<dvVendorId>4261412864</dvVendorId>
<dpDeviceType>ConnectPort X4</dpDeviceType>
<dpFirmwareLevel>34406404</dpFirmwareLevel>
<dpFirmwareLevelDesc>2.13.0.4</dpFirmwareLevelDesc>
<dpRestrictedStatus>0</dpRestrictedStatus>
<dpLastKnownIp>10.8.16.16</dpLastKnownIp>
<dpGlobalIp>66.77.174.126</dpGlobalIp>
<dpConnectionStatus>1</dpConnectionStatus>
<dpLastConnectTime>2011-12-20T20:24:00.000Z</dpLastConnectTime>
<dpContact />
<dpDescription />
<dpLocation />
<dpPanId>0xd367</dpPanId>
<xpExtAddr>00:13:A2:00:40:66:A1:B2</xpExtAddr>
<dpServerId>ClientID[3]</dpServerId>
<dpZigbeeCapabilities>383</dpZigbeeCapabilities>

SCI (Server command interface)

Digi Remote Manager Programmer Guide 174

</DeviceCore>
</result>

Update the devId, niInterfaceType, and niPhone tags

n Update the devId tag below with the devId number discovered in step a, devId is 1224 in the
above example. Replace the devId number in the example below with your device's devId
number.

n Ensure the the niInterfaceType value is set to 0.
n Update the niPhone tag below with the phone number (found within the phnum tag)

discovered in step 1. Replace the phone number displayed in the example below with your
device's phone number.

The values added below are:
devId: The devID number of the device.
niPhone: The phone number of the device (discovered in step 1).
niInterfaceType: The interface type of the device (0 means most recent version).
POST /ws/NetworkInterface

<NetworkInterface>
<devId>1224</devId>
<niInterfaceType>0</niInterfaceType>
<niTerminated>false</niTerminated>
<niPhone>19522213895</niPhone>

</NetworkInterface>

Configure Device to Receive SMS Commands
The following example RCI request will configure a device to enable SMS, configure SMS, disable client
initiated Remote Manager connections, and configure paged Remote Manager connections. See below
for an explanation of the parameters.
RCI request:

<rci_request version="1.1">
<set_setting>

<smscell>
<state>on</state>

</smscell>
<idigisms>

<state>on</state>
<restrict_sender>on</restrict_sender>
<phnum>32075</phnum>
<service_identifier>idgt</service_identifier>

</idigisms>
<mgmtconnection index="1">

<connectionType>client</connectionType>
<connectionEnabled>off</connectionEnabled>

</mgmtconnection>
<mgmtconnection index="4">

<connectionType>paged</connectionType>
<connectionEnabled>on</connectionEnabled>
<pagedConnectionOverrideEnabled>on</pagedConnectionOverrideEnabled>
<serverArray index="1">

<serverAddress>en://remotemanager.digi.com</serverAddress>
</serverArray>

</mgmtconnection>

SCI (Server command interface)

Digi Remote Manager Programmer Guide 175

<mgmtglobal>
<connIdleTimeout>2220</connIdleTimeout>

</mgmtglobal>
<mgmtnetwork index="1">

<networkType>modemPPP</networkType>
<connectMethod>mt</connectMethod>
<mtRxKeepAlive>3000</mtRxKeepAlive>
<mtTxKeepAlive>3000</mtTxKeepAlive>
<mtWaitCount>3</mtWaitCount>

</mgmtnetwork>
</set_setting>

</rci_request>

RCI for SMS
RCI group: idigisms

Field Options Description

state on, off Remote Manager SMS support enabled or disabled. If off, SMS messages
will not be processed.

phnum number The phone number that the device will use to send messages to Remote
Manager. This needs to be obtained from Digi (each cluster has its own
phone number).

service_
identifier

string An ID that when combined with the phone number forms the complete
address of Remote Manager server. This needs to be obtained from Digi
(each cluster has its own phone number).

restrict_
sender

on, off If on, only Remote Manager SMS messages originating from "phnum" and
with the service ID "service_identifier" will be honored as Remote Manager
SMS messages.

RCI group: smscell

Field Options Description

state on, off Enables basic SMS support for a device. This needs to be on for Remote
Manager SMS to communicate.

RCI group: mgmtconnection index = "1" (client initiated Remote Manager connections)

Field Options Description

connectionEnabled on, off Enables client initiated connections. When off, the device will not
attempt to keep a Remote Manager connection open.

RCI group: mgmtconnection index = "4" (paged - i.e. temporary - - Remote Manager connections)

SCI (Server command interface)

Digi Remote Manager Programmer Guide 176

Field Options Description

connectionEnabled on, off Enables temporary connections. A connection
request results in a paged Remote Manager
connection being established to the server. If this
parameter is off, a connection will not be made.

pagedConnectionOverrideEnabled on, off When on, paged connections will take priority
over client initiated requests so that connection
requests always result in a new connection. Set
to on.

serverArrayindex="1"
serverAddress

url Send to the dns name of Remote Manager server
in the form:
`en://<dns-name>`.

RCI group: mgmtglobal

Field Options Description

connIdleTimeout Timeout in
seconds

Connection is dropped after this number of seconds of inactivity.
Any traffic on the connection, including keep-alive traffic, count as
non-idle for purposes of this timer.

RCI group: mgmtnetwork index = "1 " (cellular Remote Manager connection configuration)

Field Options Description

mtRxKeepAlive Timeout in
seconds

Receive keep-alive timeout. Must be higher than connIdleTimeout or
connIdleTimeout is defeated.

mtTxKeepAlive Timeout in
seconds

Transmit keep-alive timeout. Must be higher than connIdleTimeout
or connIdleTimeout is defeated.

mtWaitCount Number Number of missed keep-alives before connection is considered
dropped. Shown for completeness only; is not directly related to
connection request behavior.

Send Remote Manager SMS Request Connect
To send a connect request to a device via SMS, POST the following SCI request to /ws/sci:

<sci_request version="1.0">
<send_message synchronous="true" syncTimeout="60" reply="all">

<targets>
<device id="00000000-00000000-00000000-00000000" />

</targets>
<sms>

<request_connect />
</sms>

</send_message>
</sci_request>

SCI (Server command interface)

Digi Remote Manager Programmer Guide 177

Details:
SCI is used to send SMS requests to Remote Manager-registered devices. The behavior is very similar
to RCI processing from a user's perspective.
As in RCI, web services requests result in jobs being created in Remote Manager. These jobs can be
synchronous or asynchronous and job results are retrieved the same way they are for RCI jobs.
The <send_message> command will be used, <send_message> options have the following effect with
SMS:

n synchronous= "true|false"

"true " results in a synchronous request; "false" for asynchronous.

n syncTimeout= "x"

Time in seconds that the operation is given to complete. Valid for synchronous jobs only.

n reply= "all|errors|none"

"all " means return a reply SMS,
"errors " means request a reply but the result of the command will only show errors,
"none " means do not request a response.

This controls whether an SMS reply is sent by the device back to the server for a command. This is
primarily intended to allow the SMS user to directly control the number of Remote Manager SMS
messages being sent, since they are charged for each one. Note, this option is honored even when it
results in less than ideal behavior. For instance, a no-reply ping is useless.
SMS requests are specified by the tag <sms> as a child element of <send_message>.
<request_connect>, requests a device to connect using EDP (reconnects if already connected).

n request_connect takes no parameters

Wait for Device to Connect
The connection status of any Remote Manager-registered device may be found by performing a GET
on /ws/DeviceCore.
The result has an entry for each Remote Manager-registered device. In that entry, the element
dpConnectionStatus is 0 if the device is disconnected and 1 if connected:

<dpConnectionStatus>0</dpConnectionStatus>

Note A GET on /ws/DeviceCore returns a list of all Remote Manager-registered devices. To retrieve
status for a single device, issue a GET on /ws/DeviceCore/{id} where the id is the id associated with a
particular device.

Send a Disconnect
Once work is complete to a device, a web services client may optionally disconnect the registered
device from Remote Manager:
POST /ws/sci

<sci_request version="1.0">
<disconnect>

<targets>
<device id="00000000-00000000-00000000-00000000" />

SCI (Server command interface)

Digi Remote Manager Programmer Guide 178

</targets>
</disconnect>

</sci_request>

Satellite requests
Remote Manager sends Iridium requests to Remote Manager-registered devices via SCI. Iridium
satellite messages are handled in a similar manner to RCI messages. They are specified as a child of
the <send_message> command. As in RCI, web services requests cause Remote Manager to create
jobs. These jobs can be synchronous or asynchronous and job results are retrieved the same way they
are for RCI jobs.

Note The asynchronous option should be used most frequently (<send_message
synchronous=false">) because the time required to send and receive Iridium satellite messages is
very long compared to other communication mechanisms. It can take as little as minutes and as much
as hours to send and receive Iridium satellite messages.

<send_message> options have the following effect:

n synchTimeout="xxx"
Behavior is identical to exsiting SCI requests.

n reply="all|errors|none"
Controls whether a reply is sent by the device back to the server for a command. This is
primarily intended to allow you to control the number of Iridium satellite messages being sent
directly. The default is "none". Note that "all" and "errors" continue to work as they do
currently in other SCI requests.

n cache="true|false|only"
Remote Manager does not currently service Iridium requests from the cache. Therefore,
specifying "only" returns an error. In addition, "true" or "false" result in the request being sent
to the device. The default is "false".

Iridium requests are specified by the <iridium> tag as a child element of <send_message>.

Iridium satellite command children

Command Description

ping Request to determine whether device is able to receive Iridium satellite messages
- No parameters

SCI (Server command interface)

Digi Remote Manager Programmer Guide 179

Command Description

raw Send a raw Iridium satellite message from a device with no modification from
Remote Manager; this method is referred to as "raw". Raw messaging is useful in
cases when customers wish to use every byte of the Iridium satellite message
(Remote Manager protocol takes approximately 5 bytes per message of overhead),
or when using a device that doesn't have Remote Manager protocol support but
does have Iridium Satellite support.

Raw messages can be no longer than 270 bytes for Iridium satellite messages sent
from the server to the device, and no longer than 340 bytes for messages sent from
the device to the server.

reboot Reboot device immediately
- No parameters

request_
connect

Request a Remote Manager data connection. If a connection has already been
made, this will force a reconnect of the management session.
- No parameters

command Command line interface request

maxResponseSize='''''

Set maximum size of the response. To reduce incurred costs, this value should be set
to "1" as often as possible. If the response is larger than this value, it will be
truncated. The value is the number of 270 byte length Iridium satellite messages
into which the response is broken.

This is an optional parameter. If not specified, the size of the response is determined
by the device.

user_msg Send a message to a registered listener in python. This command is similar to the
RCI do_command custom target command.

path='''''

Send requests to a specific listener. If this optional command is omitted, the
message is delivered to the listener on the device that is registered to the null path.

Optional
attribute for
the above
commands

format="base64|text"

Set the of encoding base for the request to Base64 or text. "base64" indicates
Base64 encoding, and "text" means the request is in plain text. The default for
format is text. All subcommands (cli, user_msg, etc.) support the
format="base64|text" attribute.

Note If the server detects characters that will cause the response to be invalid XML,
it will encode the response in Base64 and indicate this with the format="base64"
attribute. That is, even if a request uses format="text", the reply may have
format="base64" set.

SCI (Server command interface)

Digi Remote Manager Programmer Guide 180

Request connect Iridium support
Remote Manager can be used to send an Iridium "request connect" satellite message to a device,
which will cause it to connect back to the server using the device-initiated connection method over
EDP. This will only be possible if the device has an active TCP/IP connection to the internet, such as a
cellular data connection, WiFi or Ethernet connection. Once it is connected, web services requests and
UI actions can be made to the device. With this support, devices no longer need to maintain a Remote
Manager connection at all times. Connections instead can be established dynamically.
This section describes the web services actions to accomplish this. These actions can be performed
within the Remote Manager UI as well.

Configure Remote Manager with the Modem ID of the Device
Remote Manager needs to be informed of the device Modem ID. When a device connects for the first
time, the Modem ID is read from it and automatically provisioned. There are cases where auto
provisioning will not work (satellite is not configured yet, the device is provisioned without it ever
being connected, and so on). A manual provisioning method solves this problem.
To provision the Modem ID of a device in Remote Manager, the Modem ID for the satellite modem is
added to a record in the NetworkInterface.

Note The Iridium modem must be powered on; otherwise the Modem ID is not returned in the RCI
reply.

Step 1: Retrieve modem ID from device
Step 2: Locate NetworkInterface record
Step 3: Update NetworkInterface record
Step 4: Configure modem ID without a NetworkInterface record

Step 1: Retrieve modem ID from device
The Modem ID of the device can be retrieved using the following RCI request (replace with the device
ID for your device):

<sci_request version="1.0">
<send_message>

<targets>
<device id="00000000-00000000-0004F3FF-FF03A80C" />

</targets>
<rci_request version="1.1">

<query_state />
</rci_request>

</send_message>
</sci_request>

Example reply:

Note Within the following reply, the Modem ID number (indicated below) is listed within the <serial_
number> tag. Make note of the number. Later in this example you will need to use this number, based
on the device ID, to update your configuration. Copy only the Modem ID number (that is, exclude the
<serial_number> tags).

<?xml version="1.0" encoding="UTF-8"?>
<sci_reply version="1.0">

<send_message>
<device id="0000000000000-00000000-0004F3FF-FF03A80C">

SCI (Server command interface)

Digi Remote Manager Programmer Guide 181

<rci_reply version="1.1">
<query_state>

<iridium_info>
<power>on</power>
<serial_number>300234010152270</serial_number> <!--

modem ID number of the device -->
<manufacturer>Iridium</manufacturer>
<model>IRIDIUM 9600 Family SBD Transceiver</model>
<software_revision>TA10003</software_revision>
<signal_strength>3</signal_strength>
<network_available>yes</network_available>
<rx_msgs>2</rx_msgs>
<rx_msg_bytes>10</rx_msg_bytes>
<rx_total_bytes>1360</rx_total_bytes>
<rx_msg_drops>0</rx_msg_drops>
<rx_ring_cnt>2</rx_ring_cnt>
<tx_msgs>2</tx_msgs>
<tx_msg_bytes>5</tx_msg_bytes>
<tx_total_bytes>220</tx_total_bytes>

</iridium_info>
</query_state>

</rci_reply>
</device>

</send_message>
</sci_reply>

Step 2: Locate NetworkInterface record

Note The information within this step only applies to configurations that have an existing entry in
NetworkInterface to update. If you perform the GET below, and determine that your configuration
does not have an niId value, skip this step and proceed to step 4.

To find the NetworkInterface record to update for your Remote Manager-registered device:
Perform a GET on /ws/DeviceInterface/?condition=devConnectwareId='00000000-00000000-
0004F3FF-FF03A8A5' (replace with the device ID for your device).
An example reply:

<?xml version="1.0" encoding="UTF-8"?>
<result>

<resultTotalRows>1</resultTotalRows>
<requestedStartRow>0</requestedStartRow>
<resultSize>1</resultSize>
<requestedSize>1000</requestedSize>
<remainingSize>0</remainingSize>
<DeviceInterface>

<id>
<devId>32993</devId>
<devVersion>0</devVersion>
<niId>133</niId>
<niVersion>0</niVersion>

</id>
<devRecordStartDate>2011-12-16T16:31:00.000Z</devRecordStartDate>
<devMac>00:04:F3:03:A8:A5</devMac>
<devCellularModemId>356021015870112</devCellularModemId>
<devConnectwareId>00000000-00000000-0004F3FF-FF03A8A5</devConnectwareId>
<cstId>2</cstId>
<grpId>2</grpId>

SCI (Server command interface)

Digi Remote Manager Programmer Guide 182

<devEffectiveStartDate>2011-12-14T23:27:00.000Z</devEffectiveStartDate>
<devTerminated>false</devTerminated>
<niRecordStartDate>2011-12-15T00:05:00.000Z</niRecordStartDate>
<niInterfaceType>4</niInterfaceType>
<niModemId>N/A</niModemId>
<niEffectiveStartDate>2011-12-15T00:05:00.000Z</niEffectiveStartDate>
<niTerminated>false</niTerminated>
<niActivePhone>false</niActivePhone>

</DeviceInterface>
</result>

Find the niId of the NetworkInterface record to be updated; niId is 133 in the above example. Retrieve
the NetworkInterface record using the niId number found above:
/ws/NetworkInterface/133/0 (replace with your device niId, 0 means most recent version)

<?xml version="1.0" encoding="UTF-8"?>
<result>

<resultTotalRows>1</resultTotalRows>
<requestedStartRow>0</requestedStartRow>
<resultSize>1</resultSize>
<requestedSize>1000</requestedSize>
<remainingSize>0</remainingSize>
<NetworkInterface>

<id>
<niId>133</niId>
<niVersion>1</niVersion>

</id>
<niRecordStartDate>2011-12-15T00:05:00.000Z</niRecordStartDate>
<devId>32993</devId>
<devVersion>0</devVersion>
<niInterfaceType>4</niInterfaceType>
<niModemId>N/A</niModemId>
<cstId>2</cstId>
<grpId>2</grpId>
<niEffectiveStartDate>2011-12-15T00:05:00.000Z</niEffectiveStartDate>
<niTerminated>false</niTerminated>
<niActivePhone>false</niActivePhone>

</NetworkInterface>
</result>

Step 3: Update NetworkInterface record
To update the NetworkInterface record with the device Modem ID, copy the contents of
<NetworkInterface> from the GET above. Update the niModemId tag with the Modem ID number
(found within the serial_number tag) discovered in step 1 (replace N/A with your device Modem ID
number). Lastly, remove the <id> tag and all of its sub-tags.
The values added below are:
niModemId: The Modem ID number of the device (discovered in step 1).
PUT /ws/NetworkInterface/133

<?xml version="1.0" encoding="UTF-8"?>
<NetworkInterface>

<niRecordStartDate>2011-12-15T00:05:00.000Z</niRecordStartDate>
<devId>32993</devId>
<devVersion>0</devVersion>
<niInterfaceType>4</niInterfaceType>
<niModemId>300234010152270</niModemId>

SCI (Server command interface)

Digi Remote Manager Programmer Guide 183

<cstId>2</cstId>
<grpId>2</grpId>
<niEffectiveStartDate>2011-12-15T00:05:00.000Z</niEffectiveStartDate>
<niTerminated>false</niTerminated>
<niActivePhone>false</niActivePhone>

</NetworkInterface>

Step 4: Configure modem ID without a NetworkInterface record

Note The information within this step only applies to configurations that do not have an existing entry
in NetworkInterface to update (as described in step 2).

Find the the devId for your Remote Manager-registered device (indicated in the example below):
Perform a GET on /ws/DeviceCore?condition=devConnectwareId='00000000-00000000-0004F3FF-
FF03A80C' (replace with your device ID).

<?xml version="1.0" encoding="UTF-8"?>
<result>

<resultTotalRows>1</resultTotalRows>
<requestedStartRow>0</requestedStartRow>
<resultSize>1</resultSize>
<requestedSize>1000</requestedSize>
<remainingSize>0</remainingSize>
<DeviceCore>

<id>
<devId>32847</devId> <!-- devId of the device -->
<devVersion>22</devVersion>

</id>
<devRecordStartDate>2011-12-20T20:51:00.000Z</devRecordStartDate>
<devMac>00:04:F3:03:A8:0C</devMac>
<devCellularModemId>356021015867894</devCellularModemId>
<devConnectwareId>00000000-00000000-0004F3FF-FF03A80C</devConnectwareId>
<cstId>2</cstId>
<grpId>2</grpId>
<devEffectiveStartDate>2011-12-16T20:37:00.000Z</devEffectiveStartDate>
<devTerminated>false</devTerminated>
<dvVendorId>4261412864</dvVendorId>
<dpDeviceType>ConnectPort X5 R</dpDeviceType>
<dpFirmwareLevel>34472963</dpFirmwareLevel>
<dpFirmwareLevelDesc>2.14.2.3</dpFirmwareLevelDesc>
<dpRestrictedStatus>0</dpRestrictedStatus>
<dpLastKnownIp>10.9.16.35</dpLastKnownIp>
<dpGlobalIp>66.77.174.126</dpGlobalIp>
<dpConnectionStatus>1</dpConnectionStatus>
<dpLastConnectTime>2011-12-21T12:38:00.000Z</dpLastConnectTime>
<dpContact />
<dpDescription />
<dpLocation />
<dpMapLat>44.898533</dpMapLat>
<dpMapLong>-93.416252</dpMapLong>
<dpServerId>ClientID[11]</dpServerId>
<dpZigbeeCapabilities>0</dpZigbeeCapabilities>
<dpTags>,techpubs,</dpTags>

</DeviceCore>
</result>

SCI (Server command interface)

Digi Remote Manager Programmer Guide 184

Update devId and niModemId tags

n Update the devId tag below with the devId number discovered in step a, devId is 32847 in the
above example. Replace the devId number in the example below with your device's devId
number.

n Update the niModemId tag below with the Modem ID number (found within the serial_number
tag) discovered in step 1. Replace the Modem ID number displayed in the example below with
your device's Modem ID number.

The values added below are:
devId: The devID number of the device.
niModemId: The Modem ID number of the device (discovered in step 1).
POST /ws/NetworkInterface

<NetworkInterface>
<devId>32847</devId>
<niInterfaceType>4</niInterfaceType>
<niTerminated>false</niTerminated>
<niModemId>300234010152270</niModemId>

</NetworkInterface>

Configure Device to Receive Iridium Satelllite Commands
The following example RCI request will configure a Remote Manager-registered device to enable
Iridium Satellite Support, configure Iridium Satellite Support, disable client initiated Remote Manager
connections, and configure paged Remote Manager connections. See below for an explanation of the
parameters.
RCI request:

<rci_request version="1.1">
<set_setting>

<idigiiridium>
<state>on</state>
<poll>0</poll>
<power_mgmt>off</power_mgmt>
<power_state>on</power_state>

</idigiiridium>
<mgmtconnection index="1">

<connectionType>client</connectionType>
<connectionEnabled>off</connectionEnabled>

</mgmtconnection>
<mgmtconnection index="4">

<connectionType>paged</connectionType>
<connectionEnabled>on</connectionEnabled>
<pagedConnectionOverrideEnabled>on</pagedConnectionOverrideEnabled>
<serverArray index="1">

<serverAddress>en://remotemanager.digi.com</serverAddress>
</serverArray>

</mgmtconnection>
<mgmtglobal>

<connIdleTimeout>2220</connIdleTimeout>
</mgmtglobal>
<mgmtnetwork index="1">

<networkType>modemPPP</networkType>
<connectMethod>mt</connectMethod>
<mtRxKeepAlive>3000</mtRxKeepAlive>
<mtTxKeepAlive>3000</mtTxKeepAlive>

SCI (Server command interface)

Digi Remote Manager Programmer Guide 185

<mtWaitCount>3</mtWaitCount>
</mgmtnetwork>

</set_setting>
</rci_request>

Note Your <idigiiridium> settings may vary from what is displayed above.

In the above example the device has been configured to have its modem always powered up (power_
mgmt=off, power_state=on) and polling disabled (poll=0); however, you may have configured your
device to have polling enabled (in case a ring alert is missed). Additionally, if you have configured your
device to have power_mgmt=on, your modem will be off and ring alerts will not be visible. The only
way the connect request will be received is by a poll (please remember that each poll results in an
Iridium data charge).

Send an Iridium Satellite Request Connect
To send a connect request to a Remote Manager-registered device via Iridium, POST the following SCI
request to /ws/sci:

<sci_request version="1.0">
<!-- It is suggested Iridium requests be done asynchronously as they can take

a while and requests done synchronously may time out before the response has been
received -->

<send_message synchronous="false">
<targets>

<device id="00000000-00000000-0004F3FF-FF03A8A5" />
</targets>
<iridium>

<request_connect />
</iridium>

</send_message>
</sci_request>

Details:
SCI is used to send Iridium requests to Remote Manager-registered devices. The behavior is very
similar to RCI processing from a user's perspective.
As in RCI, web services requests result in jobs being created in Remote Manager. These jobs can be
synchronous or asynchronous and job results are retrieved the same way they are for RCI jobs.

Note The asynchronous option should be used most frequently (<send_message
synchronous=false">) because the time required to send and receive Iridium satellite messages is
very long compared to other communication mechanisms. It can take as little as minutes and as much
as hours to send and receive Iridium satellite messages.

The <send_message> command will be used; <send_message> options have the following effect:

n synchronous="true|false"
"true" results in a synchronous request; "false" for asynchronous.

Iridium requests are specified by the tag as a child element of <send_message>.
<request_connect>, requests a device to connect using EDP (reconnects if already connected).

n request_connect takes no parameters

SCI (Server command interface)

Digi Remote Manager Programmer Guide 186

Wait for Device to Connect
The connection status of any Remote Manager-registered device may be found by performing a GET
on /ws/DeviceCore.
The result has an entry for each Remote Manager-registered device. In that entry, the element
dpConnectionStatus is 0 if the device is disconnected and 1 if connected:

<dpConnectionStatus>0</dpConnectionStatus>

Note A GET on /ws/DeviceCore returns a list of all Remote Manager-registered devices. To retrieve
status for a single device, issue a GET on /ws/DeviceCore/{id} where the id is the id associated with a
particular device.

Send a Disconnect
Once work is complete to a device, a web services client may optionally disconnect the device from
Remote Manager:
POST /ws/sci

<sci_request version="1.0">
<disconnect>

<targets>
<device id="00000000-00000000-00000000-00000000" />

</targets>
</disconnect>

</sci_request>

SM/UDP
The SM/UDP (Short Message/User Datagram Protocol) feature allows devices to leverage the very
small data footprint of Remote Manager SM protocol (currently used for SMS and Iridium Satellite
messaging) over UDP. However, it is important to note that SM/UDP requests vary greatly from
SMS/Iridium requests as SM/UDP requests are not immediately sent to a device. Instead, requests of
this type are queued as devices may not be publicly addressable. This creates a way for devices to
interact with Remote Manager in a way that is efficient from a data perspective and does not require
a persistent connection. This feature enables devices with constrained data plans to keep data traffic
to an absolute minimum by only occasionally sending data readings to Remote Manager.
Initially, no requests are queued in the server. A device will send a request to the server and the
server will process the request, sending a reply to the device only if the device specified that one
should be sent in the request. At some point an SM/UDP request may be targeted for the device. This
request can be sent via a Web Services request, using the options within the More Menu of the Devices
page, or as the result of a scheduled task. When a device sends an SM/UDP request (known as a
datagram) to Remote Manager, Remote Manager will process the request and queue it for delivery to
the device. The next time the device sends a message (regardless of whether a reply was specified),
Remote Manager will check for queued messages and send them down to the device. For example, if
you send the SM/UDP Reboot request to your device, the device will not reboot immediately. Instead,
the SM/UDP Reboot request will be queued for the device. The next time an SM/UDP request is sent
to the device, Remote Manager will check for queued messages and send the queued SM/UDP Reboot
request to the device instructing it to reboot itself. Once a request is queued for a device, it may
remain queued for multiple days. Once the request is actually sent to a device, it typically has a
timeout of 60 seconds (plus a small window in some circumstances).

SCI (Server command interface)

Digi Remote Manager Programmer Guide 187

Sending and receiving SM/UDP messages via web services
Remote Manager sends SM/UDP requests to Remote Manager-registered devices via SCI. SM/UDP
requests are handled in a similar manner to RCI messages. They are specified as a child of the <send_
message> command. As in RCI, web services requests cause Remote Manager to create jobs. These
jobs can be synchronous or asynchronous and job results are retrieved the same way they are for RCI
jobs.
It is suggested that SM/UDP requests be done asynchronously since requests of this type require the
device to send a message before a server message can be sent, and therefore can potentially take a
long time to complete. Synchronous requests are acceptable in situations where the device is
frequently sending messages to the server.

<send_message> options have the following effect with SM/UDP:

n synchTimeout="xxx"
Behavior is identical to existing SCI requests.

n reply="all|errors|none"
Controls whether a reply is sent by the device back to the server for a command. This is
primarily intended to allow you to control the number of SM/UDP messages being sent directly.
The default is "none". Note that "all" and "errors" continue to work as they do currently in
other SCI requests.

n cache="true|false|only"
Remote Manager does not currently service SM/UDP requests from the cache. Therefore,
specifying "only" will return an error. In addition, "true" or "false" will result in the request
being sent to the device. The default is "false".

SM/UDP requests are specified by the tag <sm_udp> as a child element of <send_message>.

SM/UDP command children

Command Description

ping Request to determine whether device is able to receive SM/UDP requests
- No parameters

reboot Reboot device immediately
- No parameters

request_
connect

Request a Remote Manager data connection. If a connection has already been
made, this will force a reconnect of the management session.
- No parameters

SCI (Server command interface)

Digi Remote Manager Programmer Guide 188

Command Description

command Command line interface request

maxResponseSize='''''

Set maximum size of the response. If the response is larger than this value, it will
be truncated. The value is the number of SM/UDP messages into which the
response is broken.

This is an optional parameter. If not specified, the size of the response is
determined by the device.

user_msg Send a message to a registered listener in python. This command is similar to the
RCI do_command custom target command.

path='''''

Send requests to a specific listener. If this optional command is omitted, the
message is delivered to the listener on the device that is registered to the null
path.

Optional
attribute for
the above
commands

format="base64|text"

Set the encoding of the request to Base64 or text."base64" indicates Base64
encoding, and"text" means the request is in plain text. The default for format is
text. All subcommands (cli, user_msg, etc.) support the format="base64|text"
attribute.

Note If the server detects characters that will cause the response to be invalid
XML, it will encode the response in Base64 and indicate this with the
format="base64" attribute. That is, even if a request uses format="text", the
reply may have format="base64" set.

Request connect SM/UDP support
Remote Manager can be used to send a SM/UDP "request connect" message to a Remote Manager-
registered device which will cause it to connect back to the server using the device-initiated
connection method over TCP/IP. Once it is connected, web services requests and UI actions can be
made to the device. With this support, devices no longer need to maintain a Remote Manager
connection at all times. Connections instead can be established dynamically.
This section describes the web services actions to accomplish this. All of these actions can be
performed in the Remote Manager UI as well.

Configure Device to Receive SM/UDP Commands
The following example will configure a Remote Manager-registered device to enable SM/UDP.
POST to /ws/DeviceCore to provision a device with SM/UDP enabled.

<DeviceCore>
<devMac>00:40:9D:00:00:00</devMac>
<dpUdpSmEnabled>true</dpUdpSmEnabled>

</DeviceCore>

The device will be added to your account and configured to enable SM/UDP.

SCI (Server command interface)

Digi Remote Manager Programmer Guide 189

If you want to disable SM/UDP for a device, use the following example.
PUT to /ws/DeviceCore to update the device and disable SM/UDP.

<DeviceCore>
<devConnectwareId>00000000-00000000-00409DFF-FF000000</devConnectwareId>
<dpUdpSmEnabled>false</dpUdpSmEnabled>

</DeviceCore>

After sending this request the device will no longer be configured for SM/UDP.

Message Compression

<dpSmCompressionAvailable>true/false</dpSmCompressionAvailable>

This configures the server to allow compression to be used for SM requests. Defaults to false, but can
be inferred by a device sending a compressed request.

Pack Command

<dpSmPackAvailable>true/false</dpSmPackAvailable>

This configures the server to allow pack commands to be sent to the device. The pack command
allows multiple SM commands to be merged and sent in a single datagram to reduce data usage and
overhead. Defaults to false, but can be inferred by a device sending a pack command.

Battery Operated Mode

<dpSmBatteryOperated>true/false</dpSmBatteryOperated>

This configures the server to send requests to the device in battery operated mode. Battery operated
mode can be used for devices that should only recieve a single reply to a request sent to the server,
where it was indicated that the device needed a response. This tells the device that it can
immediately shut down its network connection to conserve power. This mode implies that the device
also supports the pack command. Unless the device requires this mode, it may add unnecessary
limitations. Defaults to false.

Send SM/UDP Request Connect
To send a connect request to a device via SM/UDP, POST the following SCI request to /ws/sci:

<sci_request version="1.0">
<!-- It is suggested SM/UDP requests be done asynchronously as they can
take a while and requests done synchronously may time out before the
response has been received. See the Check Request Status Example
for information on retrieving status and results. -->
<send_message synchronous="false">
<targets>
<device id="00000000-00000000-00000000-00000000"/>

</targets>
<sm_udp>
<request_connect/>

</sm_udp>
</send_message>

</sci_request>

Details:
SCI is used to send SM/UDP requests to Remote Manager-registered devices. The behavior is very
similar to RCI processing.

SCI (Server command interface)

Digi Remote Manager Programmer Guide 190

As in RCI, web services requests result in jobs being created in Remote Manager. These jobs can be
synchronous or asynchronous and job results are retrieved the same way they are for RCI jobs.

Note Digi recommends you execute SM/UDP requests asynchronously. Synchronous requests may
time out before the response has been received.

The <send_message> command will be used, <send_message> options have the following effect with
SM/UDP:

n synchronous="true|false"

"true" results in a synchronous request; "false" for asynchronous.
SM/UDP requests are specified by the tag <sm_udp> as a child element of <send_message>.
<request_connect>, requests a device to connect using EDP (reconnects if already connected).

n request_connect takes no parameters

Wait for Device to Connect
The connection status of any Remote Manager-registered device may be found by performing a GET
on /ws/DeviceCore.
The result has an entry for each Device Cloud-registered device. In that entry, the element
dpConnectionStatus is 0 if the device is disconnected and 1 if connected:

<dpConnectionStatus>0</dpConnectionStatus>

Note: A GET on /ws/DeviceCore returns a list of all Device Cloud-registered devices. To retrieve status
for a single device, issue a GET on /ws/DeviceCore/{id} where id is the id associated with a particular
device.

Send a Disconnect
Once work is complete to a device, a web services client may optionally disconnect the registered
device from Device Cloud:
POST /ws/sci

<sci_request version="1.0">
<disconnect>

<targets>
<device id="00000000-00000000-00000000-00000000" />

</targets>
</disconnect>

</sci_request>

security

Digi Remote Manager Programmer Guide 191

security
You can use the security web service to set or remove a password for legacy devices. However, Digi
recommends using the v1/devices (for example, ws/v1/devices/inventory) APIs to set or change
security credentials for one or more devices.
When you set a password for a device, Remote Manager attempts to configure the device with the
new password. Until Remote Manager successfully configures the new password, the device is
allowed to connect with the previous password. Once Remote Manager has configured the new
password on the device, subsequent device connections require the new password.
When you remove a password, Remote Manager removes the password from the Remote Manager
server and subsequent device connections do not require a password. However, the device is still
configured with the password, but Remote Manager does not require the password for connections.

URI
http://<hostname>/ws/security

Formats

HTTP method Format Description

POST /ws/security Set or
remove a
password
for a device.

Elements

Request content for setting a password

<set_password>
<device id="00000000-00000000-00000000-00000000">

<password>newPassword</password>
</device>

</set_password>

Request content for removing a password

<remove_password>
<device id="00000000-00000000-00000000-00000000" />

</remove_password>

You can specify multiple device elements per request.

Task

Digi Remote Manager Programmer Guide 192

Task
Use the Task web service to execute a specific task , get information about tasks, or to remove a
task. A task is a chain of commands stored in the Remote Manager file system as an XML file. Each
command element of a task can specify a command payload, along with events related to its
execution.
Once a schedule runs, it creates a task, which is essentially an invocation of a task template. The
tasks created by schedules can be managed through the Task API. The tasks, which execute
commands, create SCI jobs within the system on a per-command basis. You can check the status of
each command by querying the SCI web service interface for a given job.

URI
http://ws/Task

Formats

HTTP method Format Description

GET /ws/Task Get a list of all tasks; get
a list of tasks for a
schedule; get details for
a specific task.

GET /ws/Task/{tskId} Get details for a specific
task.

Elements

tskId
System-generated identifier for the task.

schId
System-generated identifier for the schedule.

tskScheduledTime
Time at which the task is scheduled to run.

tskStartTime
Time at which the task started execution.

tskEndTime
Time at which task stopped executing.

Task

Digi Remote Manager Programmer Guide 193

tskTargets
List of targets for the task.

tskSuccess
Number of devices that have successfully completed the task.

tskFailures
Number of devices that have completed the task with an error.

tskStatus
Current status of the task:

0 = new
1 = in_progress
3 = complete
4 = canceled

tskRequestPayload
Request payload of the task.

tskTargetCount
Total number of devices to which the task is targeted.

Task

Digi Remote Manager Programmer Guide 194

Example: Get a list of all tasks
The following example shows how to get a list of all tasks for your account.

Request

GET /ws/Task

Response

<?xml version="1.0" encoding="ISO-8859-1"?>
<result>
<resultTotalRows>1</resultTotalRows>
<requestedStartRow>0</requestedStartRow>
<resultSize>1</resultSize>
<requestedSize>1000</requestedSize>
<remainingSize>0</remainingSize>
<Task>
<tskId>732</tskId>
<schId>258</schId>
<cstId>2</cstId>
<usrId>9</usrId>
<tskScheduledTime>2014-12-14T20:59:58.070Z</tskScheduledTime>
<tskStartTime>2014-12-14T20:59:58.200Z</tskStartTime>
<tskTargets>00000000-00000000-886123FF-FF000026</tskTargets>
<tskSuccess>0</tskSuccess>
<tskFailures>0</tskFailures>
<tskStatus>1</tskStatus>
<tskRequestPayload>
<description>Another Schedule</description>
<command>
<name>List Files</name>
<event>
<on_error>
<end_task/>

</on_error>
</event>
<sci>
<file_system allowOffline="true">
<commands>
<ls path="/"/>

</commands>
</file_system>

</sci>
</command>

</tskRequestPayload>
<tskTargetCount>1</tskTargetCount>
<tskDescription>Another Schedule</tskDescription>

</Task>
</result>

Task

Digi Remote Manager Programmer Guide 195

Example: Get details for a task
The following example shows how to get details for a task with the ID of 732.

Request

GET /ws/Task/732

Response

<?xml version="1.0" encoding="ISO-8859-1"?>
<result>
<resultTotalRows>1</resultTotalRows>
<requestedStartRow>0</requestedStartRow>
<resultSize>1</resultSize>
<requestedSize>1000</requestedSize>
<remainingSize>0</remainingSize>
<Task>
<tskId>732</tskId>
<schId>258</schId>
<cstId>2</cstId>
<usrId>9</usrId>
<tskScheduledTime>2014-12-14T20:59:58.070Z</tskScheduledTime>
<tskStartTime>2014-12-14T20:59:58.200Z</tskStartTime>
<tskTargets>00000000-00000000-886123FF-FF000026</tskTargets>
<tskSuccess>0</tskSuccess>
<tskFailures>0</tskFailures>
<tskStatus>1</tskStatus>
<tskRequestPayload>
<description>Another Schedule</description>
<command>
<name>List Files</name>
<event>
<on_error>
<end_task/>

</on_error>
</event>
<sci>
<file_system allowOffline="true">
<commands>
<ls path="/"/>

</commands>
</file_system>

</sci>
</command>

</tskRequestPayload>
<tskTargetCount>1</tskTargetCount>
<tskDescription>Another Schedule</tskDescription>

</Task>
</result>

Task

Digi Remote Manager Programmer Guide 196

Example: Upload a task definition
The following example shows how to upload a task definition using the FileData web service.

PUT ws/FileData/~/my_tasks/my_task.xml?type=file

File my_task.xml contains a valid task definition.

Example: Get a list of jobs for a schedule
The following example shows how to get a list of jobs associated with a specific schedule using the SCI
web service.

GET ws/sci?condition=schId={schId}

Task template

Digi Remote Manager Programmer Guide 197

Task template
A task consists of one or more commands. The required XML format for a task is as follows:

<task>
<description>My first task.</description>
<command>

<name>Reboot</name>
<event>

<on_end>
<sleep value="15" />

</on_end>
<on_error>

<retry count="5" />
</on_error>

</event>
<sci>

<reboot />
</sci>

</command>
.
.
.
<command>
</command>

</task>

Elements

description
(Optional) Specifies a description for the task.

command
(Required) Provides configuration information for each command in the task. If the task contains
multiple commands, specify the command elements in the order in which you want to execute the
commands.

name
(Optional) Specifies a name for the command.

event
(Optional) Specifies actions to take for two events: on_end and on_error.

on_end
Specifies the number of seconds to sleep before starting execution of the next
command in the task. The sleep option forces Remote Manager to delay the execution
of the next command in the list for the specified number of seconds immediately
following the completion of the command. The default is 0 which indicates Remote
Manager does not delay after completing command before executing the next
command in the task.

v1/alerts

Digi Remote Manager Programmer Guide 198

Example:

<on_end> <sleep value="15"/> </on_end>

on_error
Specifies the action to take if an error occurs during command execution: retry, end_
task, or continue.

retry: Specifies the number of times to retry command execution. After
the specified number of retries, Remote Manager continues with the next
command in the task.
end_task: Remote Manager immediately ends execution of the task.
continue: Remote Manager ignores the error and continues with the
next command in the task.

The default is continue. That is, if you do not specify an on_error action, Remote
Manager ignores the error and continues with the next command in the task.
Example:

<on_error>
<retry count="5" />

</on_error>

v1/alerts
Use the v1/alerts web service to create, update, list, and manage alerts for your account. For each
alert, specify the alert type, the scope for the alert, as well as rules for the alert to fire and reset. The
alert scope and fire/reset rules vary depending on the alert type.

Note In the classic Remote Manager interface and pre-v1 APIs, alerts are called alarms, and the two
terms are synonymous. Going forward, Digi recommends you use the /v1/alerts API rather than the
pre-v1 Alarm APIs to manage alerts.

URI
https://<hostname>/ws/v1/alerts

Formats

HTTP method Format Description Parameters

GET /ws/v1/alerts Get a summary of the alerts API.

GET /ws/v1/alerts/summary Get a summary of alerts. query

GET /ws/v1/alerts/bulk List alerts in bulk CSV format. orderby
query

v1/alerts

Digi Remote Manager Programmer Guide 199

HTTP method Format Description Parameters

GET /ws/v1/alerts/bulk/summary
ws/v1/alerts/bulk/status

Export up to 20,000 rows of CSV
data representing the summary or
status of any alarm that has been
fired and/or reset.

orderby
query

GET /ws/v1/alerts/inventory Example: List alerts cursor
orderby
size
query

POST /ws/v1/alerts/inventory Example: Create one or more alerts None

GET,PUT,DELETE /ws/v1/alerts/inventory/{id} Get a specific alert, modify an
existing alert, and delete an alert.

GET /ws/v1/alerts/history/{alert_
id_source}

Get history of fired alerts. cursor
size
start_time
end_time
order

GET /ws/v1/alerts/status Get current status for alerts. cursor
orderby
size
query

GET /ws/v1/alerts/summary Get a summary of all alerts. cursor
orderby
size
query

Fields

id
System generated identifier for the alert.

name
String name of the alert.

description
String that describes the alert.

enabled
Boolean indicating if the alert is enabled. Default is true.

fire
The definition of the rule describing conditions for when the alert fires. Not all alerts require a fire rule.

v1/alerts

Digi Remote Manager Programmer Guide 200

fire.parameters
A map of parameter names and values indicating the conditions required for the alert to fire.

priority
String describing the priority assigned to the alert.

n high
n medium
n low

reset
The definition of the rule describing conditions for when the alert is reset. Not all alerts require a reset
rule.

reset.enabled
Boolean indicating if the rule should automatically reset.

reset.parameters
A map of parameter names and values indicating the conditions required for the alert to reset.

scope
The definition of the scope defining how the alert is applied.

scope.type
What type of scope defines how the alert is applied.

n Device: The target of the alert is a specific device.
n Global: The target of the alert is global to the account.
n Group: The target of the alert is a group or all devices in a group.
n Resource: The target of the alert is a resource in the system.
n XBeeNode: The target of the alert is a specific XBee node.

scope.value
The value indicating the scope target depends on the scope.type setting.

Scope
Type Scope Value

Device The scope.value field is a device id. For example: 00000000-00000000-00000000-
00000000

Global The scope.value field is the empty string.

Group The scope.value field is a group name: For example: Regions/Northwest indicates any
devices in the Northwest subgroup of the Regions group.

v1/alerts

Digi Remote Manager Programmer Guide 201

Scope
Type Scope Value

Resource The scope.value field is the resource identifier. For example a stream name: 00000000-
00000000-00000000-00000000/metrics/sys/cpu/used. Can use the wildcard character
(*) to include all path components of a stream name, for example
*/metrics/sys/cpu/used.

XBeeNode The scope.value field is an XBee node extended address. For example:
00:08:A2:A5:6E:4D:52:85

type
String that indicates the alert type.

n DataPoint On Change: Fires when a data point is uploaded containing a different value from
the previous data point. The scope type of a DataPoint on Change alert is always Resource.

n DataPoint condition: Fires when a data point is uploaded containing a value that matches the
specified criteria. The scope type of a DataPoint condition alert is always Resource.

n Device Excessive Disconnects: Fires when devices disconnect with a specified frequency. The
scope type of a Device Excessive Disconnects alert is Group or Device.

n Device Name On Change: Fires when a devices name changes. The scope type of a Device
Name On Change alert is Group or Device.

n Device Offline: Fires when devices disconnects for a specified time. The scope type of a Device
Offline alert is Group or Device.

n Dia channel data point condition match: Fires when a DIA channel data point is uploaded
containing a value that matches the specified criteria. The scope type of a Dia channel data
point condition match is Group or Device.

n Missing DataPoint: Fires when a new data point is not uploaded for a specified time. The
scope type of a Missing DataPoint alert is always Resource.

n Missing DiaChannel DataPoint: Fires when a new DIA channel data point is not uploaded for a
specified time. The scope type of a Missing DiaChannel DataPoint alert is Group or Device.

n Missing Smart Energy DataPoint: Fires when a new Smart Energy data point is not uploaded
for a specified time. The scope type of a Missing Smart Engergy DataPoint alert is Group,
Device, or XBeeNode.

n Smart energy data point condition match: Fires when a Smart Energy data point is uploaded
containing a value that matches the specified criteria. The scope type of a Smart energy data
point condition match ialert s Group, Device, or XBeeNode.

n Subscription Usage: Fires when the account subscription usage matches the specified
criteria. The scope type of a Subscription Usage alert is always Global.

n XBeeNode Excessive Deactivations: Fires when XBee nodes deactivate with a specified
frequency. The scope type of an XBeeNode Excessive Deactivations alert is Group, Device ,or
XBeeNode.

n XBeeNode Offline: Fires when an XBee node is offline for a specified time. The scope type of
an XBeeNode Offline alert is Group, Device, or XBeeNode.

v1/alerts

Digi Remote Manager Programmer Guide 202

Example: Datapoint condition alert
The following example alert payload represents a DataPoint condition alert. This alert might be used
to determine if action (replacing a battery) is needed for a device that is tracking voltage.
The alert fires when the value uploaded to the data stream */drivestats/voltage is less than 10 volts
for 30 minutes. The alert resets when the voltage value is greater than or equal to 10 volts for 15
minutes (for example, the battery was replaced or charged).
The wildcard (*) character used in the scope.value field indicates that any device uploading this
stream is the target for the alert (the Device ID is always the first component of a stream name and
this alert targets data streams.

{
"description": "Fires when a vehicle fleet battery needs replacing",
"enabled": true,
"fire": {

"parameters": {
"thresholdValue": "10",
"type": "numeric",
"operator": "<",
"timeout": "30",
"timeUnit": "minutes"

}
},
"id": 150027,
"name": "Low Voltage",
"priority": "high",
"reset": {

"parameters": {
"thresholdValue": "10",
"type": "numeric",
"operator": ">=",
"timeout": "15",
"timeUnit": "minutes"

}
},
"scope": {

"type": "Resource",
"value": "*/drivestats/voltage"

},
"type": "DataPoint condition"

}

Example: List alerts
Use the GET v1/alerts/inventory web service to retrieve a list of alerts.

URI

https://<hostname>/ws/v1/alerts/inventory

API Usage
There is no request payload for the GET ws/v1/alerts/inventory API. Use the alert fields and queris to
select alerts.

v1/alerts

Digi Remote Manager Programmer Guide 203

Parameters

Name Type Description

cursor string Cursor to get the next page of alerts. Omit on initial call.

orderby string Return alerts ordered by the field given. The default is "name asc"

query string Use a query expression to target a specific list of alerts. The default is all alerts.

size integer Number of items to return. The maximum and default is 1000.

Successful Response
Upon success, the list of alerts is returned.

{
"count": 1,
"size": 1000,
"list": [
{
"description": "Detects when the office cellular backup network goes

offline",
"enabled": true,
"fire": {
"parameters": {
"reconnectWindowDuration": "1"

}
},
"id": 146639,
"name": "Office Backup Offline",
"priority": "high",
"reset": {},
"scope": {
"type": "Device",
"value": "00000000-00000000-00000000-00000000"

},
"type": "Device Offline"

}
]

}

Error Response
An error response returns the error_status and error_message fields in the payload.

{
"error_status": 400,
"error_message": "error message"

}

Example: Create one or more alerts
Use the POST v1/alerts/inventory web service to create alerts for your account.

URI

https://<hostname>/ws/v1/alerts/inventory

v1/alerts

Digi Remote Manager Programmer Guide 204

API Usage
There are no parameters for the POST ws/v1/alerts/inventory API.
Specify an HTTP header of Content-Type: application/json and post json payload describing the
alert or alerts.

Request Payload
To create multiple alerts, use a list syntax. For a single alert, the list syntax is not required.

[
{ ...alert1 },
{ ...alert2 },
...
{ ...alertN }

]

Successful Response
Upon success, the alert is returned. The returned alert may differ from the input alert because default
values are supplied in the returned alert. A list response is returned whether the POST created single
or multiple alerts.

{
"count": N,
"list" : [

{ ...alert1 },
{ ...alert2 },
...
{ ...alertN },

]
}

Error Response
When creating multiple alerts, if any alert is successfully created, a response of 207 and error
information for the failed responses are returned.
In the following example response payload, the second alert failed. The HTTP response is 207 because
one alert (alert1) was created successfully, and the second item in the list has error values indicating
the problem with the second alert (alert2).

{
"count": N,
"list": [

{ ...alert1 },
{
"error_context": { ...alert2 },
"error_message": "The error message",
"error_status": 400
},
{ ...alertN }

]
}

Sample Alert Definitions
The following sample payloads represent the different alert types.
DataPoint condition
DataPoint On Change

v1/alerts

Digi Remote Manager Programmer Guide 205

Device Excessive Disconnects
Device Name On Change
Device Offline
Dia channel data point condition match
Missing DataPointThe following payload creates a Missing DataPoint alert. This alert type fires when
the interval between data point uploads or data point measurements exceeds the requested time.
Devices may cache data uploads, uploading infrequently (for example 24 hours), but uploading many
measurements (for example, 24 total measurements if sampling every hour). This alert automatically
resets when data is reported.Values: scope.type: Always Resource.scope.value: The stream with
wildcard (*) for device id or path components.uploadInterval: Fire if the amount of time between
uploads exceeds this interval.uploadTimeUnit: The units of the uploadInterval value—seconds,
minutes, hours.readingInterval: Fire if the amount of time between individual samples/reading
exceeds this interval. readingInterval}} value—seconds, minutes, hours.reset.disabled: Resets
automatically when data is reported, you can disable this by specifying true.{ "name":"Fleet sensor
not reporting", "type":"Missing DataPoint", "scope":{ "type":"Resource",
"value":"*/drivestats/voltage" } "fire":{ "parameters":{ "readingTimeUnit":"seconds",
"uploadTimeUnit":"minutes", "uploadInterval":"1", "readingInterval":"5" } }, "reset": { "disabled": true
} }

Missing DiaChannel DataPoint
Missing Smart Energy DataPoint
Smart energy data point condition match
Subscription Usage
XBeeNode Excessive Deactivations
XBeeNode Offline

DataPoint On Change
The following payload creates a DataPoint On Change alert. This alert type fires when a data stream
value changes. Repeated uploads of the same value do not cause the alert to fire. This alert
automatically resets when the data point value remains unchanged for 60 minutes.
The target data stream matches any device with a drivestats/voltage stream name.
Values:

n scope.type: Always Resource.

n scope.value: The stream with wildcard (*) for device id or path components.

n timeout: Reset automatically if the value does not change for this amount of time.

n timeUnit: One of seconds, minutes, hours.

{
"type":"DataPoint On Change",
"reset": {

"parameters": {
"timeout": "60",
"timeUnit": "minutes"

}
},
"scope": {

"type":"Resource",
"value":"*/drivestats/voltage"

v1/alerts

Digi Remote Manager Programmer Guide 206

}
}

DataPoint condition
The following payload creates a DataPoint condition alert. This alert type fires when a data stream
value matches the condition criteria.
Values:

n scope.type: Always Resource.

n scope.value: The stream with wildcard (*) for device id or path components.

n timeout: Fire or reset if the value matches for this amount of time.

n timeUnit: One of seconds, minutes, hours.

n operator: One of <, <=, >, >=, =, !=.

n type: One of string or numeric.

n thresholdValue: The target value for the condition.

{
"type": "DataPoint condition",
"name": "Voltage check",
"description": "Watch for low voltage on fleet vehicles",
"scope": {

"type": "Resource",
"value": "*/drivestats/voltage"

},
"fire": {

"parameters": {
"operator": "<",
"thresholdValue": "10",
"timeUnit": "minutes",
"timeout": "60",
"type": "numeric"
}

},
"reset": {

"parameters": {
"operator": ">=",
"thresholdValue": "10",
"timeUnit": "minutes",
"timeout": "60",
"type": "numeric"
}

}
}

Device Excessive Disconnects
The following payload creates a Device Excessive Disconnects alert. This alert type fires when a
device goes offline many times during a time period.
Values:

v1/alerts

Digi Remote Manager Programmer Guide 207

n scope.type: One of Group or Device.

n scope.value: If type is Group, then value is the full group path (with no leading slash). If type is
Device, then value is the full device ID. If type is XBeeNode, then the value is the XBee node
extended src address.

n disconnectCount: Fires if the device disconnects more than this many times in the
disconnectWindow

n disconnectWindow: The period of time in minutes for which to count disconnects.

n reconnectWindow: Resets when the device connects and stays connect for this number of
minutes.

{
"type":"Device Excessive Disconnects",
"scope":{

"type":"Device",
"value":"00000000-00000000-000000FF-FF000000"

}
"fire":{

"parameters":{
"disconnectCount":"10",
"disconnectWindow":"60"

}
},
"reset":{

"parameters":{
"reconnectWindow":"30"

}
},

}

Device Name On Change
The following payload creates a Device Name on Change alert. This alert type fires when a device
name changes. The alert does not fire when a device name is set on a device that has no name. The
alert can reset automatically.
Values:

n scope.type: One of Group or Device.

n scope.value: If type is Group, then value is the full group path (with no leading slash). If type is
Device, then value is the full device ID. If type is XBeeNode, then the value is the XBee node
extended src address.

n timeout: Reset automatically if the value does not change for this amount of time.

n timeUnit: One of seconds, minutes, hours.

{
"type":"Device Name On Change",
"reset":{

"parameters":{
"timeout":"12",
"timeUnit":"hours"

v1/alerts

Digi Remote Manager Programmer Guide 208

}
},
"scope":{

"type":"Group",
"value":"Deployments/Europe/UK"

}
}

Device Offline
The following payload creates a Device Offline alert. This alert type fires when a device disconnects
for a period of time.
Values:

n scope.type: One of Group or Device.

n scope.value: If type is Group, then value is the full group path (with no leading slash). If type is
Device, then value is the full device ID. If type is XBeeNode, then the value is the XBee node
extended src address.

n reconnectWindowDuration: Fires if the device does not reconnect within this number of
minutes.

n reset.disabled: Is set to true to cause this alert to not auto-reset. The default is false.

{
"name":"Network offline",
"type":"Device Offline",
"description":"Detect if any midwest office networks are offline",
"priority":"high",
"fire":{

"parameters":{
"reconnectWindowDuration":"12"
}

},
"reset": {

"disabled": true
},
"scope": {

"type":"Group",
"value":"Stores/North America/Midwest"

}
}

Dia channel data point condition match
The following payload creates a Dia channel data point condition match alert. This alert type fires
when the value reported in a DIA channel matches the condition criteria.
Values:

n scope.type: One of Group or Device.

v1/alerts

Digi Remote Manager Programmer Guide 209

n scope.value: If type is Group, then value is the full group path (with no leading slash). If type is
Device, then value is the full device ID. If type is XBeeNode, then the value is the XBee node
extended src address.

n channelName: The dia channel name or wildcard (*) for all channels.

n instanceName: The dia channel instance name or wildcard (*) for all instances.

n timeout: Fire or reset if the value matches for this amount of time.

n timeUnit: One of seconds, minutes, hours.

n operator: One of <, <=, >, >=, =, !=.

n type: One of string or numeric.

n thresholdValue: The target value for the condition.

{
"type": "Dia channel data point condition match",
"scope": {

"type": "Group",
"value": "New York/Sensors"

},
"fire": {

"disabled": false,
"parameters": {

"channelName": "chan1",
"instanceName": "stream",
"operator": ">=",
"thresholdValue": "25",
"timeUnit": "seconds",
"timeout": "30",
"type": "numeric"

}
},
"reset": {

"disabled": false,
"parameters": {

"channelName": "chan1",
"instanceName": "stream",
"operator": "<",
"thresholdValue": "25",
"timeUnit": "seconds",
"timeout": "30",
"type": "numeric"

}
}

}

Missing DataPoint
The following payload creates a Missing DataPoint alert. This alert type fires when the interval
between data point uploads or data point measurements exceeds the requested time. Devices may
cache data uploads, uploading infrequently (for example 24 hours), but uploading many
measurements (for example, 24 total measurements if sampling every hour).
This alert automatically resets when data is reported.

Values:

v1/alerts

Digi Remote Manager Programmer Guide 210

n scope.type: Always Resource.

n scope.value: The stream with wildcard (*) for device id or path components.

n uploadInterval: Fire if the amount of time between uploads exceeds this interval.

n uploadTimeUnit: The units of the uploadInterval value—seconds, minutes, hours.

n readingInterval: Fire if the amount of time between individual samples/reading exceeds this
interval.
readingInterval}} value—seconds, minutes, hours.

n reset.disabled: Resets automatically when data is reported, you can disable this by specifying
true.

{
"name":"Fleet sensor not reporting",
"type":"Missing DataPoint",
"scope":{

"type":"Resource",
"value":"*/drivestats/voltage"

}
"fire":{

"parameters":{
"readingTimeUnit":"seconds",
"uploadTimeUnit":"minutes",
"uploadInterval":"1",
"readingInterval":"5"

}
},
"reset": {

"disabled": true
}

}

Missing DiaChannel DataPoint
The following payload creates a Missing DiaChannel DataPoint alert. This alert type fires when the
interval between data point uploads or data point measurements exceeds the requested time.
Devices may cache data uploads, uploading infrequently (for example 24 hours), but uploading many
measurements (for example, 24 total measurements if sampling every hour).
This alert automatically resets when data is reported.
Values:

n scope.type: One of Group or Device.

n scope.value: If type is Group, then value is the full group path (with no leading slash). If type is
Device, then value is the full device ID. If type is XBeeNode, then the value is the XBee node
extended src address.

n uploadInterval: Fire if the amount of time between uploads exceeds this interval.

n uploadTimeUnit: The units of the uploadInterval value—seconds, minutes, hours.

n readingInterval: Fire if the amount of time between individual samples/reading exceeds this

v1/alerts

Digi Remote Manager Programmer Guide 211

interval.
readingInterval}} value—seconds, minutes, hours.

n channelName: The dia channel name or wildcard (*) for all channels.

n instanceName: The dia channel instance name or wildcard (*) for all instances.

n reset.disabled: Resets automatically when data is reported, you can disable this by specifying
true.

{
"type": "Missing DiaChannel DataPoint",
"scope": {

"type": "Device",
"value": "00000000-00000000-000000FF-FF000000"

},
"fire": {

"parameters": {
"channelName": "chan1",
"instanceName": "*",
"readingInterval": "10",
"readingTimeUnit": "minutes",
"uploadInterval": "1",
"uploadTimeUnit": "hours"

}
}

}

Missing Smart Energy DataPoint
The following payload creates a Missing Smart Energy DataPoint alert. This alert type fires when the
interval between data point uploads or data point measurements exceeds the requested time.
Devices may cache data uploads, uploading infrequently (for example 24 hours), but uploading many
measurements (for example, 24 total measurements if sampling every hour).
This alert automatically resets when data is reported.
Values:

n scope.type: One of Group, Device, or XBeeNode.

n scope.value: If type is Group, then value is the full group path (with no leading slash). If type is
Device, then value is the full device ID. If type is XBeeNode, then the value is the XBee node
extended src address.

n uploadInterval: Fire if the amount of time between uploads exceeds this interval.

n uploadTimeUnit: The units of the uploadInterval value—seconds, minutes, hours.

n readingInterval: Fire if the amount of time between individual samples/reading exceeds this
interval.
readingInterval}} value—seconds, minutes, hours.

n attributeId: The XBee attribute id.

n clusterId: The XBee cluster id.

n clusterType: The XBee cluster type.

v1/alerts

Digi Remote Manager Programmer Guide 212

n endpointId: The XBee endpoint id.

n reset.disabled: Resets automatically when data is reported, you can disable this by specifying
true.

{
"type": "Missing Smart Energy DataPoint",
"scope": {

"type": "Group",
"value": "New York/Sensors"

},
"fire": {

"parameters": {
"attributeId": "1",
"clusterId": "1794",
"clusterType": "0",
"endpointId": "1",
"readingInterval": "1",
"readingTimeUnit": "hours",
"uploadInterval": "24",
"uploadTimeUnit": "hours"

}
},

}

Smart energy data point condition match
The following payload creates a Smart energy data point condition match alert. This alert type fires
when the value reported in a DIA channel matches the condition criteria.
Values:

n scope.type: One of Group, Device, or XBeeNode.

n scope.value: If type is Group, then value is the full group path (with no leading slash). If type is
Device, then value is the full device ID. If type is XBeeNode, then the value is the XBee node
extended src address.

n timeout: Fire or reset if the value matches for this amount of time.

n timeUnit: One of seconds, minutes, hours.

n operator: One of <, <=, >, >=, =, !=.

n type: One of string or numeric.

n thresholdValue: The target value for the condition.

n attributeId: The XBee attribute id.

n clusterId: The XBee cluster id.

n clusterType: The XBee cluster type.

n endpointId: The XBee endpoint id.

{
"type": "Smart energy data point condition match",

v1/alerts

Digi Remote Manager Programmer Guide 213

"scope": {
"type": "Group",
"value": ""

},
"fire": {

"disabled": false,
"parameters": {

"attributeId": "1",
"clusterId": "1794",
"clusterType": "0",
"endpointId": "1",
"thresholdValue": "50",
"timeUnit": "seconds",
"timeout": "1",
"type": "numeric"

}
},
"reset": {

"disabled": false,
"parameters": {

"attributeId": "1",
"clusterId": "1794",
"clusterType": "0",
"endpointId": "1",
"thresholdValue": "49",
"timeUnit": "seconds",
"timeout": "1",
"type": "numeric"

}
}

}

Subscription Usage
The following payload creates a Subscription Usage alert. This alert type fires when the account uses
95 percent of the devices available for use based on the Digi Remote Manager subscription.
There are a wide variety of values for the parameters of this alert. It is recommended that an alert is
created with the Digi Remote Manager Web UI, and you determine the acceptable values from a call
to GETws/v1/alerts/inventory.
Values:

n scope.type: Always Global.

n scope.value: Always empty string.

n svcId: The service identifier.

n unit: The unit being checked.

n metric: The metric for the subscription data.

n thresholdValue: The target value for the condition.

{
"name":"Too many devices",
"type":"Subscription Usage",
"scope":{

v1/alerts

Digi Remote Manager Programmer Guide 214

"type":"Global",
"value":""

},
"fire":{

"parameters":{
"svcId":"3",
"unit":"%",
"metric":"devices",
"thresholdValue":"90"

}
}

}

XBeeNode Excessive Deactivations
The following payload creates an XBeeNode Excessive Deactivations alert. This alert type fires when
a device goes offline many times during a time period.
Values:

n scope.type: One of Group, Device, or XBeeNode.

n scope.value: If type is Group, then value is the full group path (with no leading slash). If type is
Device, then value is the full device ID. If type is XBeeNode, then the value is the XBee node
extended src address.

n deactivationCount: Fires if the device deactivates more than this many times in the
deactivationWindow

n deactivationWindow: The period of time in minutes for which to count deactivations.

n activationWindow: Resets when the Xbee node activates and stays activated for this number
of minutes.

{
"type":"XBeeNode Excessive Deactivations",
"scope":{

"type":"XbeeNode",
"value":"00:00:00:00:00:00:00:00"

},
"fire":{

"parameters":{
"deactivationWindow":"5",
"deactivationCount":"1"

}
},
"reset":{

"parameters":{
"activationWindow":"1"

}
}

}

XBeeNode Offline
The following payload creates an XBeeNode Offline alert. This alert type fires when an XBee node is
offline for a period of time.

v1/alerts

Digi Remote Manager Programmer Guide 215

Values:

n scope.type: One of Group, Device, or XBeeNode.

n scope.value: If type is Group, then value is the full group path (with no leading slash). If type is
Device, then value is the full device ID. If type is XBeeNode, then the value is the XBee node
extended src address.

n reconnectWindowDuration: Fires if the device does not reconnect within this number of
minutes.

n reset.disabled: Is set to true to cause this alert to not auto-reset. The default is false.

{
"type":"XBeeNode Offline",
"scope":{

"type":"Group",
"value":"New York/Manhattan/Sensors"

},
"fire":{

"parameters":{
"reconnectWindowDuration":"1"

}
}

}

v1/devices

Digi Remote Manager Programmer Guide 216

v1/devices
Use the devices web service to create, modify, delete, or get devices. The API also includes
options for getting data (channel), management, and metrics data streams.

URI
http://<hostname>/ws/v1/devices

Formats

HTTP
method Format Description Parameters

GET /ws/v1/devices Get summary
of the device
APIs.

None

GET /ws/v1/devices/bulk Get a list of
all devices in
CSV format.

group
child_
groups
orderby
tag
type
address
name
query

POST /ws/v1/devices/bulk Create a
batch of
users.

Update

GET /ws/v1/devices/channel/{id} Get a list of
data
channels for
a device.

None

GET /ws/v1/devices/channel/{id}/{name} Get a specific
data channel
for a device.

None

v1/devices

Digi Remote Manager Programmer Guide 217

HTTP
method Format Description Parameters

GET, POST,
DELETE

/ws/v1/devices/inventory List devices,
create or
modify
devices, and
delete
devices.

group
child_
groups
size
cursor
order
orderby
tag
type
address
name
query

GET, DELETE /ws/v1/devices/inventory/{id} Get or delete
a specific
device.

PUT /ws/v1/devices/inventory/{id} Update a
specific
device.

update_
only
allow_swap

GET /ws/v1/devices/management/{id} Get a list of
management
streams for a
device.

None

GET /ws/v1/devices/management/{id}/{name} Get a specific
management
stream for a
device.

None

GET /ws/v1/devices/metrics/{id} Get a list of
health
metrics for a
device.

None

GET /ws/v1/devices/metrics/{id}/{name} Get a specific
health metric
for a device.

None

GET /ws/v1/devices/types Get a list of
device types.

None

Device fields

address
Device address supplied by the device.

alerts
Total number of fired alerts for the device.

v1/devices

Digi Remote Manager Programmer Guide 218

capabilities
Capabilities to enable for the device (write-only):

Capability Description

sm_compression_available Allow compression to be used for SM requests:
true or false.

sm_pack_available Allow pack commands to be sent to the device
(multiple commands in a single datagram): true
or false.

sm_battery_operated Send requests to the device in battery-operated
mode: true or false.

sm_udp_enabled Enable SM/UDP for the device: true or false.

channels_uri
Full path to channel data.

connection_status
Keyword that indicates the connection status of the device: connected or disconnected.

description
String that describes the device.

extended_address
XBee radio EUI64 extended address for the device.

firmware_version
String that indicates the firmware version of the device.

group
Group path for the device.

id
System-generated identifier for the device.

install_code
Installation code for the device. An installation code is required for any device manufactured with an
associated installation code.

n If you attempt to add a device that requires an installation code with a missing or incorrect
code, you receive an HTTP status 400 error code along with a message describing the error.

n If you are adding multiple devices and one or more of the device installation code is missing or
incorrect, you receive an HTTP status 207 error along with a message describing the error.

v1/devices

Digi Remote Manager Programmer Guide 219

ip
Local IP address of the device.

last_connect
Date and time the device last connected to Remote Manager in ISO 8601 format.

last_disconnect
Date and time the device last disconnected from Remote Manager in ISO 8601 format.

last_update
Date and time the device was last updated in ISO ISO 8601 format.

mac
MAC address of the device.

management_uri
Full path to management data.

metrics_uri
Full path to metrics data.

notes
String that provide notes for the device (formerly user meta data).

parent
System-generated identifier for the parent device.

password
Password for the device (write-only).

public_ip
Public IP address of device (formerly called global IP).

restricted_status
Keyword that indicates the restriction status of the device: unrestricted, disabled, restricted, or
untrusted.

serial_number
Serial number of the device.

signal_percent
Percent of the primary cellular signal.

v1/devices

Digi Remote Manager Programmer Guide 220

signal_percent2
Percent of the 2nd cellular signal.

signal_quality
Signal quality of the primary cellular signal.

signal_quality2
Signal quality of the 2nd cellular signal.

signal_strength
Signal strenth of the primary cellular signal.

signal_strenth2
Signal strength of the 2nd cellular signal.

tags
An array of tags associated with the device.

type
String that indicates the device type for the device.

vendor_id
Vendor identifier assigned to the device.

Channel, management, and metric fields

id
System-generated identifier for the device.

name
Name for the data channel.

value
Current value of the channel.

units
Units for the channel value.

timestamp
Time the current value was reported (ISO 8601 standard format).

history_uri
URI to the history of channel values (in streams).

v1/devices

Digi Remote Manager Programmer Guide 221

customer_id
Identifier for the customer that owns the data.

Parameters

Name Type Description Notes

tag string Query devices with matching tags. (tag |
type |
address)
Use only
one per
request.

type string Query devices by type.

address string Query devices by address.

cursor string Cursor to get the next page of devices. Omit on initial
call.

size integer Number of itmes to return. The maximum and default is
1000.

v1/devices

Digi Remote Manager Programmer Guide 222

Example: List all devices
The following example shows how to list all devices in your inventory.

Request

GET /ws/v1/devices/inventory

Response

{
"count" : 2,
"size" : 1000,
"start" : 0,
"total" : 2,
"list" : [{
"mac" : "00:40:9D:29:8D:0E",
"id" : "00000000-00000000-00409DFF-FF298D0E",
"vendor_id" : 4261412864,
"type" : "ConnectPort X8",
"firmware_version" : "2.13.0.12",
"restricted_status" : "unrestricted",
"ip" : "10.20.1.68",
"public_ip" : "10.20.1.68",
"connection_status" : "disconnected",
"last_connect" : "2014-03-11T14:33:35.480Z",
"description" : "",
"extended_address" : "00:13:A2:00:40:0A:3F:05",
"tags" : [

"gateway",
"DIA"

],
"group" : "Primary",
"last_disconnect" : "2014-03-11T18:51:05.597Z"

}, {
"id" : "F9F967B4-33804DCE-2BDC4702-45053B1C",
"vendor_id" : 4261412871,
"type" : "DIA Device",
"restricted_status" : "untrusted",
"connection_status" : "disconnected",
"description" : "Thermostat",
"tags" : ["tstat"],
"group" : "Primary",
"address" : "dia/00000000-00000000-00409DFF-FF298D0E/sensor0",
"parent" : "00000000-00000000-00409DFF-FF298D0E"

},
...
]
}

Example: List all devices using query by tags
The following example shows how to list all devices that are tagged with a specific tag.

v1/devices

Digi Remote Manager Programmer Guide 223

Request

GET /ws/v1/devices/inventory?query=tags='myTag'

Response

{
"count" : 3,
"size" : 1000,
"list" : [{
"channels_uri" : "/ws/v1/devices/channels/8C1C080F-A8214448-2674ED16-

B9196C0E",
"metrics_uri" : "/ws/v1/devices/metrics/8C1C080F-A8214448-2674ED16-B9196C0E",
"group" : "",
"management_uri" : "/ws/v1/devices/management/8C1C080F-A8214448-2674ED16-

B9196C0E",
"type" : " ",
"connection_status" : "disconnected",
"id" : "8C1C080F-A8214448-2674ED16-B9196C0E",
"restricted_status" : "unrestricted",
"tags" : ["myTag"],
"health_status" : "unknown",
"maintenance_mode" : "off"

}, {
"channels_uri" : "/ws/v1/devices/channels/BD2EA7BE-60DF46A6-EBBF5052-

5B9217FC",
"metrics_uri" : "/ws/v1/devices/metrics/BD2EA7BE-60DF46A6-EBBF5052-5B9217FC",
"group" : "",
"management_uri" : "/ws/v1/devices/management/BD2EA7BE-60DF46A6-EBBF5052-

5B9217FC",
"type" : " ",
"connection_status" : "disconnected",
"id" : "BD2EA7BE-60DF46A6-EBBF5052-5B9217FC",
"restricted_status" : "unrestricted",
"tags" : ["myTag"],
"health_status" : "unknown",
"maintenance_mode" : "off"

}, {
"channels_uri" : "/ws/v1/devices/channels/BF652035-B3BA464A-B5C95C90-

770A4838",
"metrics_uri" : "/ws/v1/devices/metrics/BF652035-B3BA464A-B5C95C90-770A4838",
"group" : "",
"management_uri" : "/ws/v1/devices/management/BF652035-B3BA464A-B5C95C90-

770A4838",
"type" : " ",
"connection_status" : "disconnected",
"id" : "BF652035-B3BA464A-B5C95C90-770A4838",
"restricted_status" : "unrestricted",
"notes" : "yo",
"tags" : ["myTag"],
"health_status" : "unknown",
"maintenance_mode" : "off"

}]
}

v1/devices

Digi Remote Manager Programmer Guide 224

Example: Get a single device
The following example shows how to get details for a single device with an ID of F9F967B4-33804DCE-
2BDC4702-45053B1C.

Request

GET /ws/v1/devices/inventory/F9F967B4-33804DCE-2BDC4702-45053B1C

Response

{
"id" : "F9F967B4-33804DCE-2BDC4702-45053B1C",
"vendor_id" : 4261412871,
"type" : "DIA Device",
"restricted_status" : "untrusted",
"connection_status" : "disconnected",
"description" : "Thermostat",
"tags" : ["tstat"],
"group" : "Primary",
"address" : "dia/00000000-00000000-00409DFF-FF298D0E/sensor0",
"parent" : "00000000-00000000-00409DFF-FF298D0E"

}

v1/devices

Digi Remote Manager Programmer Guide 225

Example: Create a device
Use the following API to create or update one or more devices. If you don't provide a device ID,
Remote Manager automatically assigns an ID and returns the device ID in the response.
The request payload can include a single device or multiple devices. Multiple devices must be wrapped
in an array for JSON and a <list> element for XML. The response always returns the devices as a list.
The following sample JSON request creates a device with a type, a restricted_status, and tags. A
device ID is not provided.

Request

POST /ws/v1/devices/inventory

{
"type" : "Acme SuperDevice",
"restricted_status" : "unrestricted",
"tags" : ["excellent","awesome"]

}

Response

{
"count": 1,
"list": [

{
"connection_status": "disconnected",
"id": "D12FC38D-4731448E-BA203D94-AF4FE23F",
"restricted_status": "unrestricted",
"tags": [

"excellent",
"awesome"

],
"type": "Acme SuperDevice"

}
]

}

v1/devices

Digi Remote Manager Programmer Guide 226

Example: Create multiple devices
The following sample XML request creates two devices wrapped in a <list>:

Request

POST /ws/v1/devices/inventory

<list>
<device>
<type>Acme SuperDevice</type>
<restricted_status>unrestricted</restricted_status>
<tags>

<tag>excellent</tag>
<tag>awesome</tag>

</tags>
</device>
<device>
<id>12345</id>
<type>Acme SuperDevice</type>
<restricted_status>unrestricted</restricted_status>
<tags>

<tag>excellent</tag>
<tag>awesome</tag>

</tags>
</device>

</list>

Response (XML)

<results>
<count>2</count>
<list>
<device>
<id>C35ABF3A-AB14468F-9ABDC4E4-12E8D89B</id>
<type>Acme SuperDevice</type>
<restricted_status>unrestricted</restricted_status>
<connection_status>disconnected</connection_status>
<tags>
<tag>excellent</tag>
<tag>awesome</tag>

</tags>
</device>
<error>
<error_status>400</error_status>
<error_message>Identifier must have 4 segments and supplied device ID

"12345" has 1.</error_message>
</error>

</list>
</results>

v1/devices

Digi Remote Manager Programmer Guide 227

Example: Edit a device
The following examples shows how to edit the tag list and restriction status for a device.

Request

PUT ws/v1/devices/inventory/F9F967B4-33804DCE-2BDC4702-45053B1C

{
"tags" : ["bad"],
"restricted_status" : "untrusted"

}

Response

{
"id": "F9F967B4-33804DCE-2BDC4702-45053B1C",
"restricted_status": "untrusted",
"tags": ["bad"]

}

v1/devices

Digi Remote Manager Programmer Guide 228

Example: List device channels
The following example shows how to list the data channels reported by a device. A device can have up
to 500 data channels.

Request

GET ws/v1/devices/channels/F9F967B4-33804DCE-2BDC4702-45053B1C.xml

Response (XML)

<results>
<count>3</count>
<list>
<channel>
<id>F9F967B4-33804DCE-2BDC4702-45053B1C</id>
<name>temperature</name>
<value>71</value>
<units>F</units>
<timestamp>2014-02-23T19:12:57.283Z</timestamp>
<history_uri>/ws/v1/streams/history/F9F967B4-33804DCE-2BDC4702-

45053B1C/temperature</history_uri>
</channel>
<channel>
<id>F9F967B4-33804DCE-2BDC4702-45053B1C</id>
<name>light</name>
<value>10</value>
<timestamp>2014-02-23T19:12:57.983Z</timestamp>
<history_uri>/ws/v1/streams/history/F9F967B4-33804DCE-2BDC4702-

45053B1C/light</history_uri>
</channel>
<channel>
<id>F9F967B4-33804DCE-2BDC4702-45053B1C</id>
<name>humidity</name>
<value>44</value>
<units>%</units>
<timestamp>2014-02-23T19:12:56.510Z</timestamp>
<history_uri>/ws/v1/streams/history/F9F967B4-33804DCE-2BDC4702-

45053B1C/humidity</history_uri>
</channel>

</list>
</results>

v1/events

Digi Remote Manager Programmer Guide 229

Example: Delete a device
The following example shows how to delete a device from your inventory.

DELETE /ws/v1/devices/inventory/F9F967B4-33804DCE-2BDC4702-45053B1C

No response is returned unless there is an error.

v1/events
Use the v1/events web service to retrieve events.

URI
http://<hostname>/ws/v1/events

Formats

HTTP method Format Description Parameters

GET /ws/v1/events Get a
summary of
the events
APIs.

None

GET /ws/v1/events/bulk Retrieve
events for
the current
user
account in
CSV format.

start_time
end_time

GET /ws/v1/events/inventory Retrieve
events for
the current
user
account.

cursor
size
start_time
end_time

v1/groups
Use the v1/groups web service to create, update, list, or remove groups.

URI
http://<hostname>/ws/v1/groups

v1/groups

Digi Remote Manager Programmer Guide 230

Formats

HTTP
method Format Description Parameters

GET /ws/v1/groups Get summary of the groups APIs. None

GET /ws/v1/groups/inventory Get a list of groups. orderby
query

POST /ws/v1/groups/inventory/path Create a new group. path
description

PUT /ws/v1/groups/inventory/path Change the name of a group. None

DELETE /ws/v1/groups/inventory/path Remove one or more groups and
subgroubs.

move_devices
remove_
subgroups

Parameters

path
Full path for the group, including the group name.

description
Text description of the group.

move_devices
Specify whether to remove devices in the group being deleted. If you do not remove devices, any
existing devices within the removed group are moved to the root group. If you delete devices, devices
in removed groups are removed from your device inventory. The default is no.Text description of the
group.

v1/health_configs

Digi Remote Manager Programmer Guide 231

v1/health_configs
Use the health_configs API to get a list of health configurations for your account, as well as modify or
delete a health configuration.

URI
http://<hostname>/ws/v1/health_configs

Formats

HTTP
Method Format Description

GET /ws/v1/health_configs Get a summary of the
health_configs APIs.

GET /ws/v1/health_configs/inventory Get a list of all health
configurations in your
inventory.

GET, PUT,
DELETE

/ws/v1/health_configs/inventory/{id} Get, modify, or delete a
named health
configuration.

Fields

id
System-generated identifier for the device type to which the health_config applies.

Parameters

Name Type Description

cursor string Cursor to get the next page of health configurations. Omit on initial call.

size integer Number of items to return. The maximum and default is 1000.

replace boolean Boolean value that indicates whether to replace the current report
configuration.
True or Yes: Replace the current report configuration.
False or No: Update the existing report configuration with changes.

v1/health_configs

Digi Remote Manager Programmer Guide 232

Example: Get a summary of the health_config API
The following example shows how to get a summary of the health_config API.

Request

/ws/v1/health_configs

Response

{
"count" : 3,
"list" : [{
"path" : "/ws/v1/health_configs",
"requests" : [{
"method" : "GET"

}]
}, {
"path" : "/ws/v1/health_configs/inventory",
"requests" : [{
"method" : "GET",
"params" : ["size", "cursor"]

}]
}, {
"path" : "/ws/v1/health_configs/inventory/{id}",
"requests" : [{
"method" : "GET"

}, {
"method" : "PUT",
"params" : ["replace"]

}, {
"method" : "DELETE"

}]
}]

}

v1/health_configs

Digi Remote Manager Programmer Guide 233

Example: Get a list of health configurations for your account
The following example shows how to get a list of all health configurations for your account.

Request

/ws/v1/health_configs/inventory

Response

Note Because each device health configuration defines thresholds for multiple health metrics, the
output is not shown here. To see sample output, go to Documentation > API Explorer and send the
v1/health_configs/List all health configs to see details for all health configurations and
corresponding metrics on your system.

v1/health_configs

Digi Remote Manager Programmer Guide 234

Example: Get a specific health configuration in XML
The following example shows how to get the health configuration FE000002/TRANSPORT WR21 in XML
format:

/ws/v1/health_configs/inventory/FE000002/TRANSPORT WR21.xml

v1/health_configs

Digi Remote Manager Programmer Guide 235

Example: Disable a health configuration
Using the HTTP PUT method, the following example shows how to disable the health configuration
FE000002/TRANSPORT WR21.

Request

/ws/v1/health_configs/inventory/FE000002/TRANSPORT WR21

{
"enabled": false,

}

v1/jobs

Digi Remote Manager Programmer Guide 236

Example: change a health configuration
The following example shows how to change an existing Transport WR11 health configuration.

Request

/ws/v1/health_configs/inventory//FE000002/TRANSPORT WR11

{
"id": "FE000002/TRANSPORT WR11",
"enabled": true,
"rules":[
{
"enabled":true,
"stream":"DataPoint/*/metrics/sys/mem/free",
"threshold":{
"error":{
"ranges":[
{
"upper":150000

}
]

},
"warning":{
"ranges":[
{
"lower":150000,
"upper":700000,
"lower_bound_type":"OPEN",
"upper_bound_type":"OPEN"

}
]

},
"normal":{
"ranges":[
{
"lower":700000

}
]

}
}

}
]

}

Response

Note Because each device health configuration defines thresholds for multiple health metrics, the
output is not shown here. To see sample output, go to Documentation > API Explorer and send the
v1/health_configs/Change a health config to see sample results.

v1/jobs
List, cancel, or delete jobs in an account.

v1/jobs

Digi Remote Manager Programmer Guide 237

URI
http://<hostname>/ws/v1/jobs

Formats

Method Formats Description

GET /ws/v1/jobs Get a summary of the jobs API.

GET /ws/v1/jobs/inventory Get a list of all jobs.

GET /ws/v1/jobs/inventory.xml Get a list of all jobs in XML
format.

GET /ws/v1/jobs/bulk Retrieve a list of jobs in CSV
format.

GET /ws/v1/jobs/{job_id} Retrieve a job

PUT /ws/v1/jobs/cancel{job_id} Cancel one or more jobs.

PUT /ws/v1/jobs/inventory/cancel?query=username='
{username}'

Cancel one or more jobs for a
user.

DELETE /ws/v1/jobs/inventory/{id} Delete a job.

DELETE /ws/v1/jobs/cancel?query=job_type='{job_type}' Delete one or more jobs by job
type.

Parameters

Name Description

orderby Specify any field described in the query parameter syntax. Optionally
add 'asc' or 'desc' to control the sort order. For example, to order
with most recently created jobs first, specify orderby=id desc.

Note The default sort order is desc (descending).

query Specify the jobs query to evaluate. See Query language for v1 APIs.

cursor

size

Query fields
n carrier/carrier2—the current provider of the primary or secondary cellular service
n connection_status—one of 'connected' or 'disconnected'
n contact—any user contact information

v1/jobs

Digi Remote Manager Programmer Guide 238

n description—any description associated with the device
n firmware_version—the firmware level
n health_status—one of 'normal', 'warning', 'error' or 'unknown'
n id—the device ID
n ip—the last known IP address of the device
n last_connect—last connect time of the device
n last_disconnect—last disconnect time of the device
n last_update—last update time of the device
n location—the device location
n mac - the MAC address
n name - the device name
n network/network2—the current network (for example LTE) of the primary or secondary

cellular service
n notes—device notes, also sometimes referred to as user meta data)
n public_ip—the last known global IP address of the device
n restricted_status—one of 'unrestricted', 'restricted', 'disabled', 'untrusted'
n serial_number—the device serial number
n signal_percent/signal_percent2—the percent of signal strength from 0 to 100 primary or

secondary cellular service
n signal_quality/signal_quality2—the signal quality of the primary or secondary cellular service
n signal_strength/signal_strength2—the signal strength of the primary or secondary cellular

service
n type—the device type
n vendor_id—the vendor ID value of the device

Query operators
n =, <>—Equality comparisons, used on any numeric, group, tag, text or enumerated fields
n <, <=, >, >=—Relative comparisons, used on any numeric or text fields. Not used for group, tag

or enumerated fields
n startsWith, endsWith, contains—Used on any group, tag or text matching fields. Not used for

numeric fields

Timestamp field comparisons are not supported.

Query examples
n Complex queries

query=group startsWith '/NorthWest' and (connection_status =
'disconnected' or signal_percent < 20)

Find any devices in the /Northwest group and any subgroups that are either
disconnected or have a low signal strength.

v1/metadata

Digi Remote Manager Programmer Guide 239

query=tags = 'important' and (health_status = 'error' or health_status
= 'warning')

Find any devices that have the 'important' tag and are in an error or warning health
status.

n Group queries

query=group = '/test'

Query full group path, so matches any device in group '/test' and ignores any subgroups.

query=group startsWith 'test/'

Query full group path, so matches any device in the test root group and any subgroups.

query=group startsWith 'test'

Query full group path, so matches any device in any root group whose name starts with
'test' and all subgroups.

query=group endsWith '/leaf'

Query full group path, so matches any device in any path that ends with the group name
'leaf'.

n Tag Queries

query=tags = 'sensor'

Matches any device having a tag 'sensor'.

query=tags <> 'sensor'

Matches any device having no tag 'sensor'.

query=tags contains 'ns'

Matches any device having any tag containing 'ns'.

query=tags startsWith 'sens'

Matches any device having any tag that starts with 'sens'.

query=tags endsWith 'or'

Matches any device having any tag that ends with 'or'.

v1/metadata
Use the v1/metadata web service to retrieve device descriptors.

URI
https://<hostname>/ws/v1/metadata

v1/monitors/history

Digi Remote Manager Programmer Guide 240

Formats

HTTP
method Format Description Parameters

GET /ws/v1/metadata Get a summary of the
/ws/v1/metatdata APIs.

GET /ws/v1/metadata/device/descriptors/settings/
{vendorId}/{deviceType}/{firmwareVersion:.}

Retrieves (GET) the query_
settings descriptor data
for a vendor, device
type/firmware version.

product_id
firmware_
id

GET /ws/v1/metadata/device/descriptors/state/
{vendorId}/{deviceType}/{firmwareVersion:.}

Retrieves (GET) the query_
state descriptor data for a
vendor, device
type/firmware version.

product_id
firmware_
id

GET /ws/v1/metadata/device/descriptors/ui/
{vendorId}/{deviceType}/{firmwareVersion:.}

Retrieves (GET) ui
descriptor data for a
vendor, device
type/firmware version.

product_id
firmware_
id
allow_
fallback

v1/monitors/history
Use the v1/monitors/history API to retrieve saved push notifications that may have been sent or have
yet to be sent to push monitors. This feature is available for customers who are subscribed to the
Push Monitor service.
Not all monitors save push notifications. Monitors that support saving of push notifications
(sometimes called persistent monitors) can have those notifications replayed on restart and the
history can be retrieved. When a monitor is updated to change the topics that are being monitored,
existing saved push notifications are not affected. Regardless of when the events are generated,
event timestamps are saved using the server timestamp. Queries using this API with start_time or
end_time parameters restrict the returned events based on the server timestamps of those events.
Queries using this API with a cursor or when receiving more than one push notification, enable the
return of a polling cursor.

Polling cursor
In addition to the normal paged output options for version 1 web services (for example, count, size,
cursor and next_uri), the monitors/history API supports polling for subsequent results by returning a
polling cursor (result elements polling_cursor and polling_uri). The polling cursor is returned for every
monitors/history query that has returned any results or has received a cursor as input, allowing a
continuation of that query at a later time.
You can always use a polling_cursor to poll for any added push notifications (which are ordered by
timestamp) that were saved by the monitor since the last call that returned the polling_cursor. If the
API is paging through a large set of existing results, the polling cursor and the traditional cursor are
both be set to an identical value. However, if all results have been returned for a continued query, no

v1/monitors/history

Digi Remote Manager Programmer Guide 241

traditional cursor is set because all pages of existing results have been returned. Those results will
still receive a polling_cursor element, allowing further continuation of those queries. The polling_
cursor avoids having to manually calculate the required timestamp and add the start_time parameter
to subsequent queries: use the polling_cursor or the polling_uri directly to retrieve subsequent data.

URI
http://<hostname>/ws/v1/monitors/history

Formats

Method Formats Description

GET /ws/v1/monitors/history Get a list of saved push
notifications.

Parameters

Name Type Description

start_time timestamp Specify the start time (inclusive) in ISO 8601 or
epoch (long). The default value is the first saved
notification.

end_time timestamp Specify the end time (exclusive) in ISO 8601 or
epoch (long). The default value is the current last
saved notification.

size integer Specify the maximum number of saved push
notifications to return.

cursor string Cursor to get the next page of devices. Omit on
initial call.

polling_cursor string Returned for every monitors/history query that has
returned any results or has received a cursor as
input, allowing a continuation of the query at a
later time.

next_uri string URI value that can be used to request the next
page of data. No value is returned if there are no
more pages available.

polling_uri string Returned for every monitors/history query that has
returned any results.

Example: Query polling monitor history
The following example shows how to get all event history for polling monitor 433016.

v1/settings

Digi Remote Manager Programmer Guide 242

Request

/ws/v1/monitors/history/433016

Response

{
"count": 1,
"list": [

{
"DataPoint": {

"cstId": 73846,
"data": "0",
"description": "",
"id": "80ba3970-563d-11e5-b865-fa163ed14178",
"quality": 99,
"serverTimestamp": 1441725785735,
"streamId": "00000000-00000000-00409DFF-FF50B8B1/temp",
"streamType": "FLOAT",
"streamUnits": "Kelvin",
"timestamp": 1441725785735

},
"group": "*",
"operation": "INSERTION",
"timestamp": "2015-09-08T15:23:05.888Z",
"topic": "73846/DataPoint/00000000-00000000-00409DFF-FF50B8B1/temp"

}
],
"polling_cursor": "80d1920a-563d-11e5-b865-fa163ed14178",
"polling_uri": "/ws/v1/monitors/history/440495?cursor=80d1920a-563d-11e5-

b865-fa163ed14178",
"size": 1000

}

v1/settings
Use the settings web service to create, update, or list device settings for your account.

URI
http://<hostname>/ws/v1/settings

Formats

HTTP method Format Description Parameters

GET /ws/v1/settings Get
summary of
the settings
APIs.

v1/settings

Digi Remote Manager Programmer Guide 243

HTTP method Format Description Parameters

GET /ws/v1/settings/inventory
/ws/v1/settings/inventory.xml

Get a list of
all settings
for your
account.

GET /ws/v1/settings/inventory/{name} Get the
value for a
specific
setting.

name

PUT /ws/v1/settings/inventory/ Change the
value for a
setting.

name
value

Delete /ws/v1/groups/inventory/{name} Remove a
setting.

name

v1/reports

Digi Remote Manager Programmer Guide 244

v1/reports
Remote Manager generates status reports for alarms, connections, health, and monitors. Use the
reports API to get a list of all available reports or a specific status report.

URI
http://<hostname>/ws/v1/reports

Formats

Method Formats Description

GET /ws/v1/reports Get a list of available reports, including summary
information.

GET /ws/v1/reports/alarms Get a list of fired alarms, along with the total count
for each alarm type.

GET /ws/v1/reports/alerts Get a list of all fired alerts, along with the total
count for each alert type.

GET /ws/v1/reports/connections Get a connection status summary for all devices by
state: connected, disconnected, never connected.

GET ws/v1/reports/connections/history Get a history of aggregate connection status for all
devices by state: connected, disconnected, never
connected. Use start_time and end_time to specify
the range of data to include.

v1/reports

Digi Remote Manager Programmer Guide 245

Method Formats Description

GET /ws/v1/reports/devices Get a report based on a device query:

/ws/v1/reports/devices/carrier—
Summarize current device network
providers.
/ws/v1/reports/devices/carrier2—
Summarize current device network
providers.
/ws/v1/reports/devices/network—
Summarize current device networks.
/ws/v1/reports/devices/signal_
percent—Summarize current device
signal.
/ws/v1/reports/devices/connection_
status—Summarize current device
connections.
/ws/v1/reports/devices/health_
status—Summarize current device
health.
/ws/v1/reports/devices/restricted_
status—Summarize current device
restricted status.
/ws/v1/reports/devices/vendor_id—
Summarize current device vendor IDs.
/ws/v1/reports/devices/type—
Summarize current device types.
/ws/v1/reports/devices/firmware_
version—Summarize current device
firmware versions.
/ws/v1/reports/devices/geolocation—
Get device geolocation.

GET ws/v1/reports/health_status Get a summary of health status for all devices, along
with counts for each health metric.

GET /ws/v1/reports/health Get a list of devices in each health state: normal,
warning, error, and unknown.

GET /ws/v1/reports/monitors Get a list of monitor states for the account, along
with the number of entities in each state: inactive,
active, suspended, and disconnecting.

Parameters

Name Type Description

child_groups string Boolean value that specifies whether to include all
children of the group in the status: true to include
all child groups; false to include only the parent
group. The default is true.

v1/reports

Digi Remote Manager Programmer Guide 246

Name Type Description

end_time timestamp Specify the end time (exclusive) in ISO 8601 or
epoch (long).

group string Specify a group to get status information for the
group.

query string Specify the device query to summarize. The query
language is similar to SQL
Query sntax:

n SQL-like conditions using AND, OR, and
parenthesis to group expressions

n Various condition operators on numeric and
text values

n Single quoted text literals: 'TheText'
n Text escape for quote character is the

quote: 'isn''t difficult'
n Numeric literals support 0x prefix for hex
n Enumerated values (like connection_status)

are treated as text
n Case insensitive comparisons

Timestamp field conditions are not supported.

start_time timestamp Specify the start time (inclusive) in ISO 8601 or
epoch (long).

scope string Specify primary or secondary for any of the
carrier, network, and signal_percent device
reports. The report summarizes information for the
primary or secondary cellular modem. The default
is primary.

type string Specify a device type for which you want to get
status.

Query fields
n carrier/carrier2—the current provider of the primary or secondary cellular service
n connection_status—one of 'connected' or 'disconnected'
n contact—any user contact information
n description—any description associated with the device
n firmware_version—the firmware level
n health_status—one of 'normal', 'warning', 'error' or 'unknown'
n id—the device ID
n ip—the last known IP address of the device
n last_connect—last connect time of the device

v1/reports

Digi Remote Manager Programmer Guide 247

n last_disconnect—last disconnect time of the device
n last_update—last update time of the device
n location—the device location
n mac - the MAC address
n name - the device name
n network/network2—the current network (for example LTE) of the primary or secondary

cellular service
n notes—device notes, also sometimes referred to as user meta data)
n public_ip—the last known global IP address of the device
n restricted_status—one of 'unrestricted', 'restricted', 'disabled', 'untrusted'
n serial_number—the device serial number
n signal_percent/signal_percent2—the percent of signal strength from 0 to 100 primary or

secondary cellular service
n signal_quality/signal_quality2—the signal quality of the primary or secondary cellular service
n signal_strength/signal_strength2—the signal strength of the primary or secondary cellular

service
n type—the device type
n vendor_id—the vendor ID value of the device

Query operators
n =, <>—Equality comparisons, used on any numeric, group, tag, text or enumerated fields
n <, <=, >, >=—Relative comparisons, used on any numeric or text fields. Not used for group, tag

or enumerated fields
n startsWith, endsWith, contains—Used on any group, tag or text matching fields. Not used for

numeric fields

Timestamp field comparisons are not supported.

Query examples
n Complex queries

query=group startsWith '/NorthWest' and (connection_status =
'disconnected' or signal_percent < 20)

Find any devices in the /Northwest group and any subgroups that are either
disconnected or have a low signal strength.

query=tags = 'important' and (health_status = 'error' or health_status
= 'warning')

Find any devices that have the 'important' tag and are in an error or warning health
status.

n Group queries

v1/reports

Digi Remote Manager Programmer Guide 248

query=group = '/test'

Query full group path, so matches any device in group '/test' and ignores any subgroups.

query=group startsWith 'test/'

Query full group path, so matches any device in the test root group and any subgroups.

query=group startsWith 'test'

Query full group path, so matches any device in any root group whose name starts with
'test' and all subgroups.

query=group endsWith '/leaf'

Query full group path, so matches any device in any path that ends with the group name
'leaf'.

n Tag Queries

query=tags = 'sensor'

Matches any device having a tag 'sensor'.

query=tags <> 'sensor'

Matches any device having no tag 'sensor'.

query=tags contains 'ns'

Matches any device having any tag containing 'ns'.

query=tags startsWith 'sens'

Matches any device having any tag that starts with 'sens'.

query=tags endsWith 'or'

Matches any device having any tag that ends with 'or'.

v1/reports

Digi Remote Manager Programmer Guide 249

Example: Get a summary of the reports API
The following examples gets a summary of the reports API.

Request

GET /ws/v1/reports

Response

{
"count" : 5,
"list" : [{
"path" : "/ws/v1/reports",
"requests" : [{
"method" : "GET"

}]
}, {
"path" : "/ws/v1/reports/alarms",
"requests" : [{
"method" : "GET"

}]
}, {
"path" : "/ws/v1/reports/connections",
"requests" : [{
"method" : "GET",
"params" : ["group", "type", "child_groups"]

}]
}, {

v1/reports

Digi Remote Manager Programmer Guide 250

Example: Get a report of fired alarms
The following example shows how to get a report on fired alarms that includes totals for each alarm
type:

Request

GET /ws/v1/reports/alarms

Response

{
"count" : 8,
"size" : 1000,
"list" : [{
"id" : 11673,
"name" : "System Throttles",
"description" : "Detects when system alarm conditions occur for System

Throttles",
"fired" : 1

}, {
"id" : 11971,
"name" : "System Monitors",
"description" : "Detects when system alarm conditions occur for System

Monitors",
"fired" : 4

}, {
"id" : 14448,
"name" : "Device Offline",
"description" : "Detects when a device disconnects from Remote Manager and

fails to reconnected within the specified time",
"fired" : 1

}, {
"id" : 15662,
"name" : "Device Excessive Disconnects",
"description" : "Detects devices with an excessive number of disconnects.",
"fired" : 178

}, {
"id" : 15665,
"name" : "Subscription Usage",
"description" : "Fires when subscription usage exceeds a certain threshold",
"fired" : 1

}, {
"id" : 16091,
"name" : "Missing Smart Energy DataPoint",
"description" : "Fires when devices have not reported Smart Energy data

within the specified time",
"fired" : 1

}, {
"id" : 17141,
"name" : "Subscription Usage",
"description" : "Fires when subscription usage exceeds a certain threshold",
"fired" : 1

}, {
"id" : 17163,
"name" : "Missing DataPoint",

v1/reports

Digi Remote Manager Programmer Guide 251

"description" : "Fires when data points are not reported within the specified
time",

"fired" : 1
}]

}

v1/reports

Digi Remote Manager Programmer Guide 252

Example: Get a health status report
The following example shows how to get a health status report for all devices in your account:

Request

GET /ws/v1/reports/health

Response

{
"unknown" : {
"count" : 2

},
"normal" : {
"count" : 2462

},
"warning" : {
"count" : 5

},
"error" : {
"count" : 3

}
}

Example: Get connection status history report
The following example shows how to get a connection status history report.

Request

/ws/v1/reports/connections/history?start_time=2015-09-08T17:00:00.000Z&end_
time=2015-09-08T17:15:00.000Z

Response

[{
"connected" : 3,
"disconnected" : 1,
"never_connected" : 2,
"start_time" : "2015-09-08T17:00:00.000Z"

}, {
"connected" : 3,
"disconnected" : 1,
"never_connected" : 2,
"start_time" : "2015-09-08T17:05:00.000Z"

}, {
"connected" : 3,
"disconnected" : 1,
"never_connected" : 2,
"start_time" : "2015-09-08T17:10:00.000Z"

}, {
"connected" : 3,
"disconnected" : 1,

v1/reports

Digi Remote Manager Programmer Guide 253

"never_connected" : 2,
"start_time" : "2015-09-08T17:15:00.000Z"

}]

v1/reports

Digi Remote Manager Programmer Guide 254

Example: Get monitor status report
The following example shows how to get a monitor status report. The report lists the total number of
monitors that are inactive, active, suspended, disconnecting, disabled, and connection.

Request

GET /ws/v1/reports/monitors

Response

{
"inactive" : {
"count" : 10

},
"active" : {
"count" : 290

},
"suspended" : {
"count" : 320

},
"disconnecting" : {
"count" : 15

},
"disabled" : {
"count" : 5

},
"connecting" : {
"count" : 7

}
}

v1/streams

Digi Remote Manager Programmer Guide 255

v1/streams
Use the streams web service to manage data streams and data points. You can also use the
streams web service to upload a batch of data points to streams using an XML or CVS file. See
Direct device uploads.

URI
http://<hostname>/ws/v1/streams

Formats

Method Format Description Parameters

GET /ws/v1/streams Get a
summary of
the streams
APIs.

None

GET /ws/v1/streams/bulk/history Get historical
data in CSV
format.

order
start_time
end_time
timeline

GET, POST /ws/v1/streams/inventory List, create,
or modify
data
streams.

order
cursor
size
category

GET /ws/v1/streams/inventory/{stream_id} Get a specific
data stream.

order
cursor, size
start_time
end_time
timezone
interval
method

PUT, DELETE /ws/v1/streams/inventory/{stream_id} Create,
modify, or
delete a
specific data
stream.

GET /ws/v1/streams/inventory?category=carrier Get carrier
usage data
for devices.

v1/streams

Digi Remote Manager Programmer Guide 256

Method Format Description Parameters

POST /ws/v1/streams/history Add one or
more data
points to a
data stream

GET /ws/v1/streams/history/{stream_id} Get the
history for a
data stream.

order
cursor
size
start_time
end_time
timeline

DELETE /ws/v1/streams/history/{stream_id} Delete the
history for a
data stream.

start_time,
end_time,
timeline

GET /ws/v1/streams/rollups/{stream_id} Get roll-up
information
for a data
stream.

GET /ws/v1/streams/history/{device_id}/carrier/{sim_
id}/usage/{usage_id}

Get carrier
usage data
for a device.

GET /ws/v1/streams/inventory?category=data Get data
streams
reported by
devices.

GET /ws/v1/streams/inventory?category=metrics Get health
metrics
streams
reported by
devices.

GET /ws/v1/streams/inventory?category=management Get
management
streams
recorded for
devices.

Stream fields

id
Steam identifier.

description
Stream description.

v1/streams

Digi Remote Manager Programmer Guide 257

type
Data type of the stream:

n integer
n long
n float
n double
n string
n binary

value
Current value of the data stream.

timestamp
Date and time the current value was set.

server_timestamp
Date and time the current value was received.

stream_units
Units for the data.

forward_to
List of additional streams to forward data to when received.

History fields

id
Identifier of the data point in the stream history.

stream_id
Stream identifier of the history data.

Roll-up fields

stream_id
Stream identifier for the roll-up data.

v1/streams

Digi Remote Manager Programmer Guide 258

Parameters

Name Type Description

start_
time

timestamp Start time (inclusive) in ISO 8601 or epoch (long).

end_
time

timestamp End time (exclusive) in ISO 8601 or epoch (long).

timeline string Timestamps to use in the request: client or server. The default is client.

cursor string Cursor to get the next page of devices. Omit on initial call.

size integer Number of items to return. The maximum and default is 1000.

order string Return streams ordered by ID (asc | desc). The default is ascending (asc).

category string Return streams for the specified category: data, metrics, management, or
carrier. If you do not use the category parameter, streams for all categories
are returned.

timezone string Timezone in which to calculate rollups. Applies only to rollups with intervals
of day or longer.

interval string Rollup interval: half, hour, day, week, or month. The default is hour.

method string Rollup method: sum, average, min, max, count, standarddev. The default is
average.

Direct device uploads
Devices can upload directly to data streams over any of the existing transports (TCP, UDP, SMS, and
Satellite). The path specified in the data service message begins with DataPoint and the rest of the
message is mapped to a data stream appended to the device ID.
For example, if the device sends a data point file specifying the filename DataPoint/temp1, the data
point is added to the data stream <device-id>/temp1. The file must follow one of the expected
formats and must specify the format via the file extension. The following types are supported for a
given extension:

Format Extension Description

XML .xml XML representation same as the /ws/DataPoint interface.

CSV .csv Comma separated list. One data point per line with details separated by
commas.

Binary .bin Whatever the content of the uploaded data is directly inserted to a single data
point.

Data limits related to direct device uploads
To maximize the speed and throughput of Remote Manager, limitations have been imposed on device
uploads.

v1/streams

Digi Remote Manager Programmer Guide 259

n Maximum number of data points allowed per request: 250
n Maximum size of Send Data requests: 2MB
n Maximum size of replies to Device Requests: 2MB
n Maximum number of binary data points allowed: 64KB

Note The Description field for a data point does not display in the Remote Manager UI Data Streams
view.

When devices push data points up to Remote Manager, the description included refers to the data
point, not the data stream. To view the description, you must retrieve data point via web services.

XML
XML format uses the same format used in /ws/DataPoint PUT. The stream id is ignored since it is
provided by the path. Also, any streams listed in the forwardTo field will be normalized to the device's
stream. This is done to prevent one device from uploading data into another device's stream.

<DataPoint>
<data>42</data>
<!-- Everything below this is optional -->
<description>Temperature at device 1</description>
<location>0.0, 0.0, 0.0</location>
<quality>99</quality>
<dataType>float</dataType>
<units>Kelvin</units>

</DataPoint>

For multiple data points in one message:

<list>
<DataPoint>
<data>42</data>
<timestamp>1234566</timestamp>

</DataPoint>
<DataPoint>
<data>43</data>

</DataPoint>
</list>

CSV
An optional upload format is to specify the data in UTF-8 encoded comma separated values. Each line
('\n' terminated) specifies a data point. The default order is:

DATA, TIMESTAMP, QUALITY, DESCRIPTION, LOCATION, DATATYPE, UNITS, FORWARDTO

Meaning the following file:

data, 1,99,"my description",,INTEGER,kelvins,"stream1,stream2"
data2,2,50,"my description"
data3,3,25,"my description"

Would create 3 data points, set the stream's units/type to kelvins/Integers, and have the data points
with the data "data", "data2", and "data3", using the epoch timestamps of 1, 2, and 3.
Note that location was omitted in the above example. You can omit values by leaving them empty or
stopping before the end. For example:

v1/streams

Digi Remote Manager Programmer Guide 260

Empty values:data,1,,,99
Ending early:data,1
Order can be overridden. You can define a header on the first line by starting it with a '#' character, for
example:

#TIMESTAMP,DATA
1, data
2, data2
3, data3

Will create 3 data points 1ms apart starting at epoch (1970).
Multiple datapoints for multiple streams from a device can be inserted in one message using the
STREAMID value. When the STREAMID value is specified, the file name is no longer used for the stream
name.
For example:

#STREAMID,DATA,TIMESTAMP
sensor1/port1,97,1
sensor1/port2,98,1
sensor2/port1,42,1
sensor2/port2,0,2

Will create 4 data points, one in each of 4 separate streams for the device. The first 3 data points are
at 1ms after the epoch (1970) and the final data point is 1ms later.
The XML version is as follows:

<list>
<DataPoint><streamId>sensor1/port1</streamId><data>97</data><timestamp>1</timesta
mp></DataPoint>
<DataPoint><streamId>sensor1/port2</streamId><data>98</data><timestamp>1</timesta
mp></DataPoint>
<DataPoint><streamId>sensor2/port1</streamId><data>42</data><timestamp>1</timesta
mp></DataPoint>
<DataPoint><streamId>sensor2/port2</streamId><data>0</data><timestamp>2</timestam
p></DataPoint>
</list>

Binary Concise Alternative Format
The disadvantage to using the XML format is that it is very verbose. This binary alternative format can
be used to be more concise. You can specify a simple value instead of XML or CSV data. When the value
is pushed to /DataPoint, it is stored in complete as-is in time-series data (in the exact binary format as
provided). For details on endianness, bit lengths, and so on for supported data types see the dataType
in the Data Streams section. However, data types are not required. Data can be 1 byte status
indicators or 10k images but Remote Manager will not be able to provide rollups on things which do
not use the specified formats.
For instance, the following data service message:
path: /DataPoint/temp1.bin
content: 42

Will result in a new data point with a value of "42" (in binary).
Note: The binary concise mechanism has the following limitations:

v1/streams

Digi Remote Manager Programmer Guide 261

n Only single values can be uploaded per data service message
n Data must be smaller than 64k

Deciding which format to use when inserting data
Whitespace characters for the data value are preserved in all formats. Use quotes around the string
for CSV format to preserve break lines. For binary data, we recommend you to use binary concise
format. Binary concise format however can't be used to create multiple data points in a single
request. To create multiple binary data points in a single request, we recommend you to use a base64
encoded string.

v1/streams

Digi Remote Manager Programmer Guide 262

Example: List all streams
Use the following API to list all streams for the current user.

Request

GET /ws/v1/streams/inventory

Response

{
"count": 1000,
"size": 1000,
"cursor": "380a2605-392b-d5aa-392b-d5a9ad4571a0",
"next_uri": "/ws/v1/streams/inventory?size=3&cursor=380a2605-392b-d5aa-392b-

d5a9ad4571a0",
"list": [

{
"history_uri": "/ws/v1/streams/history/F9F967B4-33804DCE-2BDC4702-

45053B1C/humidity",
"id": "F9F967B4-33804DCE-2BDC4702-45053B1C/humidity",
"server_timestamp": "2014-02-23T19:12:59.847Z",
"timestamp": "2014-02-23T19:12:56.510Z",
"type": "LONG",
"units": "%",
"value": "44"

},
{

"description": "freezer",
"history_uri": "/ws/v1/streams/history/F9F967B4-33804DCE-2BDC4702-

45053B1C/temperature",
"id": "F9F967B4-33804DCE-2BDC4702-45053B1C/temperature",
"server_timestamp": "2014-02-23T19:12:59.848Z",
"timestamp": "2014-02-23T19:12:57.283Z",
"type": "LONG",
"units": "F",
"value": "71"

},
...

],
}

v1/streams

Digi Remote Manager Programmer Guide 263

Example: Get a stream
Use the following request to get a stream.

Request

GET /ws/v1/streams/inventory/F9F967B4-33804DCE-2BDC4702-45053B1C/temperature

Response

<results>
<stream>

<id>F9F967B4-33804DCE-2BDC4702-45053B1C/temperature</id>
<description>freezer</description>
<type>LONG</type>
<value>71</value>
<units>F</units>
<timestamp>2014-02-23T19:12:57.283Z</timestamp>
<server_timestamp>2014-02-23T19:12:59.848Z</server_timestamp>
<history_uri>/ws/v1/streams/history/F9F967B4-33804DCE-2BDC4702-

45053B1C/temperature</history_uri>
</stream>

</results>

v1/streams

Digi Remote Manager Programmer Guide 264

Example: Create a stream
Use the following API to create (or update) one or more streams. The request payload can include a
single stream or multiple streams. Multiple streams must be wrapped in an array for JSON and a
<list> element for XML. The response always returns the streams as a list.

Request

POST /ws/v1/streams/inventory

{
"description": "test stream",
"id": "MyNewStream",
"type": "LONG"

}

Response

{
"count": 1,
"list": [

{
"description": "test stream",
"id": "MyNewStream",
"type": "LONG"

}
]

}

v1/streams

Digi Remote Manager Programmer Guide 265

Example: Create multiple streams
The following example shows how to create multiple streams with one stream request.

Request

POST /ws/v1/streams/inventory

[
{

"description": "test stream",
"id": "MyNewStream",
"type": "LONG"

},
{

"description": "another test stream",
"id": "MyOtherStream",
"type": "STRING"

}
]

Response

{
"count": 2,
"list": [

{
"description": "test stream",
"id": "MyNewStream",
"type": "LONG"

},
{

"description": "another test stream",
"id": "MyOtherStream",
"type": "STRING"

}
]

}

Example: Add multiple data points to a data stream
The following example adds multiple data points to the "myStream" data stream.

Request
/ws/v1/streams/history

[{
"stream_id": "myStream",
"stream_type": "DOUBLE",
"timestamp": "2014-02-23T19:37:04.517Z",
"value": "41"

},

v1/streams

Digi Remote Manager Programmer Guide 266

{
"stream_id": "myStream",
"stream_type": "DOUBLE",
"timestamp": "2014-02-23T19:38:01.372Z",
"value": "42"

},
{
"stream_id": "myStream",
"stream_type": "DOUBLE",
"timestamp": "2014-02-23T19:39:02.785Z",
"value": "43"

}]

v1/streams

Digi Remote Manager Programmer Guide 267

Example: Edit a stream
Use the following API request to update (or create) a single stream.

Request

PUT /ws/v1/streams/inventory/F9F967B4-33804DCE-2BDC4702-45053B1C/temperature

{
"units": "Celsius"

}

Response

{
"description": "freezer",
"history_uri": "/ws/v1/streams/history/F9F967B4-33804DCE-2BDC4702-

45053B1C/temperature",
"id": "F9F967B4-33804DCE-2BDC4702-45053B1C/temperature",
"server_timestamp": "2014-02-23T19:12:59.848Z",
"timestamp": "2014-02-23T19:12:57.283Z",
"type": "LONG",
"units": "Celsius",
"value": "71"

}

v1/streams

Digi Remote Manager Programmer Guide 268

Example: Delete a stream
Use the following API request to get history for data points in a stream:

DELETE /ws/v1/streams/inventory/F9F967B4-33804DCE-2BDC4702-45053B1C/temperature

A DELETE request does not return a response unless there is an error.

v1/streams

Digi Remote Manager Programmer Guide 269

Example: Get data history for a stream
Use the following API request to get history for data points in a stream:

Request

GET /ws/v1/streams/history/F9F967B4-33804DCE-2BDC4702-45053B1C/temperature

Response

{
"count": 1000,
"size": 1000,
"cursor": "4fec418e-9cba-11e3-9a38-7cc3a1879642",
"next_uri": "/ws/v1/streams/history/F9F967B4-33804DCE-2BDC4702-

45053B1C/temperature?cursor=4fec418e-9cba-11e3-9a38-7cc3a1879642",
"list": [

{
"id": "1e1b67a5-9cb6-11e3-9a38-7cc3a1879642",
"quality": 0,
"server_timestamp": "2014-05-08T20:05:23.358Z",
"stream_id": "F9F967B4-33804DCE-2BDC4702-45053B1C/temperature",
"timestamp": "2014-02-23T18:12:55.434Z",
"value": "68"

},
{

"id": "4fec418e-9cba-11e3-9a38-7cc3a1879642",
"quality": 0,
"server_timestamp": "2014-05-08T20:06:09.710Z",
"stream_id": "F9F967B4-33804DCE-2BDC4702-45053B1C/temperature",
"timestamp": "2014-02-23T18:42:56.998Z",
"value": "70"

}
...

]
}

v1/streams

Digi Remote Manager Programmer Guide 270

Example: Delete data points for a stream
Use the following API request to delete datapoints from a steam. You can delete datapoints within a
time range. If no time range is specified, all datapoints are deleted.

DELETE /ws/v1/streams/history/F9F967B4-33804DCE-2BDC4702-
45053B1C/temperature?start_time=2014-02-23T00:00:00.000Z&end_time=2014-02-
24T00:00:00.000Z

v1/streams

Digi Remote Manager Programmer Guide 271

Example_Get rollup data for a stream
Use the following API request to get rollups of stream history. Rollups are defined by a method
(average, min, max, and so on) and an interval (hourly, daily, and so on).

Request

GET /ws/v1/streams/rollups/F9F967B4-33804DCE-2BDC4702-
45053B1C/temperature?method=average&interval=hour&start_time=2014-02-
23T00:00:00.000Z

Response

{
"count": 2,
"size": 1000,
"start_time": "2014-02-23T00:00:00.000Z"
"list": [

{
"stream_id": "F9F967B4-33804DCE-2BDC4702-45053B1C/temperature",
"timestamp": "2014-02-23T18:00:00.000Z",
"value": 69.0

},
{

"stream_id": "F9F967B4-33804DCE-2BDC4702-45053B1C/temperature",
"timestamp": "2014-02-23T19:00:00.000Z",
"value": 71.0

}
],

}

Example: Get carrier usage information
The following example shows how to get carrier usage information for your Remote Manager account.
Usage information is reported by device. The id returned for each carrier subscription can be used as
the stream_id on /ws/v1/streams requests.

Request

GET /ws/v1/streams/inventory?category=carrier

Response

{
"count" : 1,
"size" : 1000,
"list" : [{
"id" : "0008CAFE-F4F71405-7CD7F7FF-

FFD126B5/carrier/89014103257651711449/usage/data/transferred",
"type" : "DOUBLE",
"value" : "0.0",
"units" : "kbytes",
"timestamp" : "2016-05-09T08:49:49.131Z",

v1/users

Digi Remote Manager Programmer Guide 272

"server_timestamp" : "2016-05-09T08:49:49.173Z",
"history_uri" : "/ws/v1/streams/history/0008CAFE-F4F71405-7CD7F7FF-

FFD126B5/carrier/89014103257651711449/usage/data/transferred"
}]

}

v1/users
Use the users web service to create, update, or list users for your account. Only admin users can
view or change all users for an account. Users without admin privileges can view or update their
own user account, but they cannot change their security policy or role.

URI
http://<hostname>/ws/v1/settings

Formats

HTTP method Format Description Parameters

GET /ws/v1/users Get
summary of
the users
APIs.

None

GET /ws/v1/users/bulk Get a list of
all users for
the account
in CSV
format.

orderby
query

POST /ws/v1/users/change_password/{uuid} Change
password
for an
existing
user.

None

POST /ws/v1/users/forgot_password/{username:.+} None

POST /ws/v1/users/forgot_username/{email_address:.+}

GET
POST

/ws/v1/users/inventory Retrieve
(GET) or
change a
list of all
users in the
account.

orderby
cursor
query
size

v1/users

Digi Remote Manager Programmer Guide 273

HTTP method Format Description Parameters

GET
PUT
DELETE

/ws/v1/users/inventory/{username:.+} Retrieve
(GET),
create
(PUT), or
remove
(DELETE) a
user.

None

Fields

address
(Optional) String that specifies the street address for the user.

city
(Optional) String that specifies the city for the user.

country
(Optional) String that specifies the country for the user.

email
(Required) Email address for the user.

enabled
(Required) Specifies whether the username is enabled or disabled. The default is enabled.

first_name
(Required) First name of the user.

job_title
(Optional) Job title of the user.

last_login
Returns the timestamp of the last login for the user.

last_name
(Required) Last name of the user.

password
(Required) Password of the user.

phone_number
(Optional) Phone number for the user.

v1/users

Digi Remote Manager Programmer Guide 274

postal_code
(Optional) Postal code for the user address.

registration_date
Returns the timestamp for the user registration.

security_policy
(Optional) Specifies a security policy for the user.

role
(Required) Specifies the role for the user. Roles include: Administrator, User, Read only users,
Application, Read only application.

state
(Optional) State for the user address.

username
(Required) Username for the user.

XbeeAttributeCore

Digi Remote Manager Programmer Guide 275

XbeeAttributeCore
Use the XbeeAttribueCore web service to identify one or more attributes of any node in your set of
home area networks (HANs).

URI
http://<hostname>/ws/XbeeAttributeCore

Formats

HTTP method Format Description

GET /ws/XbeeAttributeCore[?param1¶m2...¶mn] List all
nodes in
your
account.

Elements

devConnectwareId
Device identifier of the node gateway.

xpExtAddr
ZigBee 64-bit extended address from the device.

xpParentAddr
For an endnode (xpNodeType = 2), the network address of the connecting router. For a router
(xpNodeType = 1), the value is 0xFFFE.

xeEndpointId
ZigBee endpoint on which the cluster resides.

xpProfileId
ZigBee device profile associated with the node.

xeDeviceId
ZigBee device type associated with the node.

xeDeviceVersion
ZigBee device version.

xcClusterType
ZigBee cluster type.

XbeeAttributeCore

Digi Remote Manager Programmer Guide 276

Cluster type Description

0 Server

1 Client

xaAttributeId
ZigBee attribute identifier.

xaAttributeType
ZigBee attribute type. See ZigBee Cluster Library (ZCL) and associated profile specification for more
information on ZigBee attribute types.

XbeeAttributeCore

Digi Remote Manager Programmer Guide 277

Example: Identify node attributes in your home area networks
(HANs)
The following example shows how to identify node attributes in your home area networks (HANs).

Request

/ws/XbeeAttributeCore

Response (abbreviated)

<?xml version="1.0" encoding="ISO-8859-1"?>
<result>

<resultTotalRows>5978</resultTotalRows>
<requestedStartRow>0</requestedStartRow>
<resultSize>1000</resultSize>
<requestedSize>1000</requestedSize>
<remainingSize>4978</remainingSize>
<XbeeAttributeCore>

<id>
<xpExtAddr>00:08:A2:00:06:3D:8E:BC</xpExtAddr>
<xeEndpointId>1</xeEndpointId>
<xcClusterType>0</xcClusterType>
<xcClusterId>1794</xcClusterId>
<xaAttributeId>256</xaAttributeId>

</id>
<cstId>2</cstId>
<devConnectwareId>00000000-00000000-000000FF-FF000B21</devConnectwareId>
<xeProfileId>265</xeProfileId>
<xeDeviceId>1281</xeDeviceId>
<xeDeviceVersion>0</xeDeviceVersion>
<xaAttributeType>37</xaAttributeType>

</XbeeAttributeCore>
<XbeeAttributeCore>

<id>
<xpExtAddr>00:08:A2:00:0D:F1:50:05</xpExtAddr>
<xeEndpointId>1</xeEndpointId>
<xcClusterType>0</xcClusterType>
<xcClusterId>1794</xcClusterId>
<xaAttributeId>256</xaAttributeId>

</id>
<cstId>2</cstId>
<devConnectwareId>00000000-00000000-000000FF-FF000427</devConnectwareId>
<xeProfileId>265</xeProfileId>
<xeDeviceId>1281</xeDeviceId>
<xeDeviceVersion>0</xeDeviceVersion>
<xaAttributeType>37</xaAttributeType>

</XbeeAttributeCore>
<XbeeAttributeCore>

<id>
<xpExtAddr>00:08:A2:00:0E:C3:35:E2</xpExtAddr>
<xeEndpointId>1</xeEndpointId>
<xcClusterType>0</xcClusterType>
<xcClusterId>1794</xcClusterId>
<xaAttributeId>256</xaAttributeId>

</id>

XbeeAttributeCore

Digi Remote Manager Programmer Guide 278

<cstId>2</cstId>
<devConnectwareId>00000000-00000000-000000FF-FF0004EF</devConnectwareId>
<xeProfileId>265</xeProfileId>
<xeDeviceId>1281</xeDeviceId>
<xeDeviceVersion>0</xeDeviceVersion>
<xaAttributeType>37</xaAttributeType>

</XbeeAttributeCore>

XbeeAttributeFull

Digi Remote Manager Programmer Guide 279

XbeeAttributeFull
Use the XbeeAttributeFull web service to display a list of ZigBee attribute names.

URI
http://<hostname>/ws/XbeeAttributeFull

Formats

HTTP method Format Description

GET /ws/XbeeAttributeFull List all
ZigBee
attributes
for all
nodes.

Elements
None

XbeeAttributeFull

Digi Remote Manager Programmer Guide 280

Example: List ZigBee full attrbutes
The following example shows how to get a complete list of ZigBee attributes.

Request

GET /ws/XbeeAttributeFull

Response (abbreviated)

<?xml version="1.0" encoding="ISO-8859-1"?>
<result>

<resultTotalRows>5978</resultTotalRows>
<requestedStartRow>0</requestedStartRow>
<resultSize>1000</resultSize>
<requestedSize>1000</requestedSize>
<remainingSize>4978</remainingSize>
<XbeeAttributeFull>

<id>
<xpExtAddr>00:08:A2:00:06:3D:8E:BC</xpExtAddr>
<xeEndpointId>1</xeEndpointId>
<xcClusterType>0</xcClusterType>
<xcClusterId>1794</xcClusterId>
<xaAttributeId>256</xaAttributeId>

</id>
<cstId>2</cstId>
<devConnectwareId>00000000-00000000-000000FF-FF000B21</devConnectwareId>
<xpNetAddr>16054</xpNetAddr>
<xpNodeType>1</xpNodeType>
<xpMfgId>4126</xpMfgId>
<xpDiscoveryIndex>1</xpDiscoveryIndex>
<xpUpdateTime>2014-06-04T02:14:00.000Z</xpUpdateTime>
<xeStatus>0</xeStatus>
<xeProfileId>265</xeProfileId>
<xeDeviceId>1281</xeDeviceId>
<xeDeviceVersion>0</xeDeviceVersion>
<xaAttributeType>37</xaAttributeType>

</XbeeAttributeFull>
<XbeeAttributeFull>

<id>
<xpExtAddr>00:08:A2:00:0D:F1:50:05</xpExtAddr>
<xeEndpointId>1</xeEndpointId>
<xcClusterType>0</xcClusterType>
<xcClusterId>1794</xcClusterId>
<xaAttributeId>256</xaAttributeId>

</id>
<cstId>2</cstId>
<devConnectwareId>00000000-00000000-000000FF-FF000427</devConnectwareId>
<xpNetAddr>16054</xpNetAddr>
<xpNodeType>1</xpNodeType>
<xpMfgId>4126</xpMfgId>
<xpDiscoveryIndex>1</xpDiscoveryIndex>
<xpUpdateTime>2014-06-04T02:01:00.000Z</xpUpdateTime>
<xeStatus>0</xeStatus>
<xeProfileId>265</xeProfileId>
<xeDeviceId>1281</xeDeviceId>

XbeeAttributeFull

Digi Remote Manager Programmer Guide 281

<xeDeviceVersion>0</xeDeviceVersion>
<xaAttributeType>37</xaAttributeType>

</XbeeAttributeFull>
<XbeeAttributeFull>

<id>
<xpExtAddr>00:08:A2:00:0E:C3:35:E2</xpExtAddr>
<xeEndpointId>1</xeEndpointId>
<xcClusterType>0</xcClusterType>
<xcClusterId>1794</xcClusterId>
<xaAttributeId>256</xaAttributeId>

</id>
<cstId>2</cstId>
<devConnectwareId>00000000-00000000-000000FF-FF0004EF</devConnectwareId>
<xpNetAddr>16054</xpNetAddr>
<xpNodeType>1</xpNodeType>
<xpMfgId>4126</xpMfgId>
<xpDiscoveryIndex>1</xpDiscoveryIndex>
<xpUpdateTime>2014-06-04T02:01:00.000Z</xpUpdateTime>
<xeStatus>0</xeStatus>
<xeProfileId>265</xeProfileId>
<xeDeviceId>1281</xeDeviceId>
<xeDeviceVersion>0</xeDeviceVersion>
<xaAttributeType>37</xaAttributeType>

</XbeeAttributeFull>
<XbeeAttributeFull>

<id>
<xpExtAddr>00:08:A2:00:21:46:E3:46</xpExtAddr>
<xeEndpointId>1</xeEndpointId>
<xcClusterType>0</xcClusterType>
<xcClusterId>1794</xcClusterId>
<xaAttributeId>256</xaAttributeId>

</id>
<cstId>2</cstId>
<devConnectwareId>00000000-00000000-000000FF-FF00072E</devConnectwareId>
<xpNetAddr>16054</xpNetAddr>
<xpNodeType>1</xpNodeType>
<xpMfgId>4126</xpMfgId>
<xpDiscoveryIndex>1</xpDiscoveryIndex>
<xpUpdateTime>2014-06-04T02:01:00.000Z</xpUpdateTime>
<xeStatus>0</xeStatus>
<xeProfileId>265</xeProfileId>
<xeDeviceId>1281</xeDeviceId>
<xeDeviceVersion>0</xeDeviceVersion>
<xaAttributeType>37</xaAttributeType>

</XbeeAttributeFull>

XbeeClusterCore

Digi Remote Manager Programmer Guide 282

XbeeClusterCore
Use the XbeeClusterCore web resource to identify one or more clusters of any node in your set of
home area networks (HANs). To retrieve XBee attributes or attribute data, use the XbeeAttributeCore
or XbeeAttributeFull web services.

URI
/http://<hostname>/ws/XbeeClusterCore

Formats

HTTP method Format Description

GET /ws/XbeeClusterCore[?param1¶m2...¶mn] List all
clusters.

Elements

devConnectwareId
Device identifier of the node gateway.

xpExtAddr
ZigBee 64-bit extended address from the device.

xpParentAddr
For an endnode (xpNodeType = 2), the network address of the connecting router. For a router
(xpNodeType = 1), the value is 0xFFFE.

xeEndpointId
ZigBee endpoint on which the cluster resides.

xpProfileId
ZigBee device profile associated with the node.

xeDeviceId
ZigBee device type associated with the node.

xeDeviceVersion
ZigBee device version.

xcClusterId
ZigBee cluster associated with the node.

XbeeClusterCore

Digi Remote Manager Programmer Guide 283

xcClusterType
ZigBee cluster type.

Cluster type Description

0 Server

1 Client

XbeeClusterCore

Digi Remote Manager Programmer Guide 284

Example: List all clusters
The following example shows how to list all clusters for your account.

Request

/ws/XbeeClusterCore

Response (abbreviated)

<?xml version="1.0" encoding="ISO-8859-1"?>
<result>

<resultTotalRows>53802</resultTotalRows>
<requestedStartRow>0</requestedStartRow>
<resultSize>1000</resultSize>
<requestedSize>1000</requestedSize>
<remainingSize>52802</remainingSize>
<XbeeClusterCore>

<id>
<xpExtAddr>00:08:A2:00:06:3D:8E:BC</xpExtAddr>
<xeEndpointId>1</xeEndpointId>
<xcClusterType>0</xcClusterType>
<xcClusterId>0</xcClusterId>

</id>
<cstId>2</cstId>
<devConnectwareId>00000000-00000000-000000FF-FF000B21</devConnectwareId>
<xeProfileId>265</xeProfileId>
<xeDeviceId>1281</xeDeviceId>
<xeDeviceVersion>0</xeDeviceVersion>

</XbeeClusterCore>
<XbeeClusterCore>

<id>
<xpExtAddr>00:08:A2:00:06:3D:8E:BC</xpExtAddr>
<xeEndpointId>1</xeEndpointId>
<xcClusterType>0</xcClusterType>
<xcClusterId>3</xcClusterId>

</id>
<cstId>2</cstId>
<devConnectwareId>00000000-00000000-000000FF-FF000B21</devConnectwareId>
<xeProfileId>265</xeProfileId>
<xeDeviceId>1281</xeDeviceId>
<xeDeviceVersion>0</xeDeviceVersion>

</XbeeClusterCore>
<XbeeClusterCore>

<id>
<xpExtAddr>00:08:A2:00:06:3D:8E:BC</xpExtAddr>
<xeEndpointId>1</xeEndpointId>
<xcClusterType>0</xcClusterType>
<xcClusterId>1794</xcClusterId>

</id>
<cstId>2</cstId>
<devConnectwareId>00000000-00000000-000000FF-FF000B21</devConnectwareId>
<xeProfileId>265</xeProfileId>
<xeDeviceId>1281</xeDeviceId>
<xeDeviceVersion>0</xeDeviceVersion>

</XbeeClusterCore>

XbeeCore

Digi Remote Manager Programmer Guide 285

XbeeCore
Use the XbeeCore web service to display a current list of ZigBee nodes in your account or refresh
(discover) the node list. You can also use PUT to associate text with a specified node.

URI
http://<hostname>/ws/XbeeCore

Formats

HTTP method Format Description

GET /ws/XbeeCore[?param1¶m2...¶mn] List all
nodes in
your
account.

PUT /ws/XbeeCore/{xpExtAddr}/{xpUserMetaData} Add user-
defined text
metadata
to a node.

Elements

cstId
Remote Manager identifier for the customer.

grpId
Remote Manager identifier for the customer group.

grpPath
Full path name of the specified group.

devConnectwareId
Device identifier of the node gateway.

xpExtAddr
ZigBee 64-bit extended address from the device.

xpNetAddr
ZigBee 16-bit network address of the node.

xpNodeType
ZigBee node type:

XbeeCore

Digi Remote Manager Programmer Guide 286

Node type Description

0 Coordinator

1 Router

2 Endnode

xpParentAddr
For an endnode (xpNodeType = 2), the network address of the connecting router. For a router
(xpNodeType = 1), the value is 0xFFFE.

xpProfileId
ZigBee device profile associated with the node.

xpMfgId
ZigBee manufacturing identifier of the node.

xpDeviceType
Device type of the node.

n Product type: Low order 16 bits.
n Module type: High order 16 bits.

Text descriptions for product and module types are returned by xmtModuleTypeDesc and
xptProductTypeDesc.

xpNodeId
ZigBee node identifier.

xpDiscoveryIndex
Index within the list of nodes discovered on the home area network (HAN).

xmtModuleTypeDesc
Text description of the module type defined in xpDeviceType.

xptProductTypeDesc
Text description of the product type defined in xpDeviceType.

xpStatus
For Smart Energy nodes only. Connection status of the node: 0 for disconnected or 1 for connected.

xpUpdateTime
Time the node was last discovered.

xpUserMetaData
User-defined free-form text associated with a specified node.

XbeeCore

Digi Remote Manager Programmer Guide 287

Parameters
Use the following parameters to determine the data to be retrieved by a GET operation.

Parameter Description

cache Boolean value that indicates whether to use the cached node list.

n true: Return the cached list of discovered nodes.
n false: Return the current list of discovered nodes.

clear Boolean value that specifies whether to clear the current node list.

n true: Clear the current node list and discover/refresh the list.
n false: Use the current node information.

XbeeCore

Digi Remote Manager Programmer Guide 288

Example: List all nodes
The following example shows how to list all nodes in all XBee networks associated with your Remote
Manager account.

Request

GET /ws/XbeeCore

Response (abbreviated)

<?xml version="1.0" encoding="ISO-8859-1"?>
<result>

<resultTotalRows>5978</resultTotalRows>
<requestedStartRow>0</requestedStartRow>
<resultSize>1000</resultSize>
<requestedSize>1000</requestedSize>
<remainingSize>4978</remainingSize>
<XbeeCore>

<xpExtAddr>00:08:A2:00:06:3D:8E:BC</xpExtAddr>
<devConnectwareId>00000000-00000000-000000FF-FF000B21</devConnectwareId>
<cstId>2</cstId>
<grpId>2</grpId>
<xpNetAddr>16054</xpNetAddr>
<xpNodeType>1</xpNodeType>
<xpMfgId>4126</xpMfgId>
<xpDiscoveryIndex>1</xpDiscoveryIndex>
<xpStatus>1</xpStatus>
<xpUpdateTime>2014-06-04T02:14:00.000Z</xpUpdateTime>
<grpPath/>

</XbeeCore>
<XbeeCore>

<xpExtAddr>00:08:A2:00:0D:F1:50:05</xpExtAddr>
<devConnectwareId>00000000-00000000-000000FF-FF000427</devConnectwareId>
<cstId>2</cstId>
<grpId>2</grpId>
<xpNetAddr>16054</xpNetAddr>
<xpNodeType>1</xpNodeType>
<xpMfgId>4126</xpMfgId>
<xpDiscoveryIndex>1</xpDiscoveryIndex>
<xpStatus>1</xpStatus>
<xpUpdateTime>2014-06-04T02:01:00.000Z</xpUpdateTime>
<grpPath/>

</XbeeCore>
<XbeeCore>

<xpExtAddr>00:08:A2:00:0E:C3:35:E2</xpExtAddr>
<devConnectwareId>00000000-00000000-000000FF-FF0004EF</devConnectwareId>
<cstId>2</cstId>
<grpId>2</grpId>
<xpNetAddr>16054</xpNetAddr>
<xpNodeType>1</xpNodeType>
<xpMfgId>4126</xpMfgId>
<xpDiscoveryIndex>1</xpDiscoveryIndex>
<xpStatus>1</xpStatus>
<xpUpdateTime>2014-06-04T02:01:00.000Z</xpUpdateTime>
<grpPath/>

XbeeCore

Digi Remote Manager Programmer Guide 289

</XbeeCore>
<XbeeCore>

<xpExtAddr>00:08:A2:00:21:46:E3:46</xpExtAddr>
<devConnectwareId>00000000-00000000-000000FF-FF00072E</devConnectwareId>
<cstId>2</cstId>
<grpId>2</grpId>
<xpNetAddr>16054</xpNetAddr>
<xpNodeType>1</xpNodeType>
<xpMfgId>4126</xpMfgId>
<xpDiscoveryIndex>1</xpDiscoveryIndex>
<xpStatus>1</xpStatus>
<xpUpdateTime>2014-06-04T02:01:00.000Z</xpUpdateTime>
<grpPath/>

</XbeeCore>
<XbeeCore>

<xpExtAddr>00:08:A2:00:2D:DF:F3:25</xpExtAddr>
<devConnectwareId>00000000-00000000-000000FF-FF000A16</devConnectwareId>
<cstId>2</cstId>
<grpId>2</grpId>
<xpNetAddr>16054</xpNetAddr>
<xpNodeType>1</xpNodeType>
<xpMfgId>4126</xpMfgId>
<xpDiscoveryIndex>1</xpDiscoveryIndex>
<xpStatus>1</xpStatus>
<xpUpdateTime>2014-06-04T02:14:00.000Z</xpUpdateTime>
<grpPath/>

</XbeeCore>
<XbeeCore>

<xpExtAddr>00:08:A2:00:40:CA:9D:2B</xpExtAddr>
<devConnectwareId>00000000-00000000-000000FF-FF000673</devConnectwareId>
<cstId>2</cstId>
<grpId>2</grpId>
<xpNetAddr>16054</xpNetAddr>
<xpNodeType>1</xpNodeType>
<xpMfgId>4126</xpMfgId>
<xpDiscoveryIndex>1</xpDiscoveryIndex>
<xpStatus>1</xpStatus>
<xpUpdateTime>2014-06-04T02:15:00.000Z</xpUpdateTime>
<grpPath/>

</XbeeCore>
<XbeeCore>

<xpExtAddr>00:08:A2:00:40:F1:60:54</xpExtAddr>
<devConnectwareId>00000000-00000000-000000FF-FF000B80</devConnectwareId>
<cstId>2</cstId>
<grpId>2</grpId>
<xpNetAddr>16054</xpNetAddr>
<xpNodeType>1</xpNodeType>
<xpMfgId>4126</xpMfgId>
<xpDiscoveryIndex>1</xpDiscoveryIndex>
<xpStatus>1</xpStatus>
<xpUpdateTime>2014-06-04T02:00:00.000Z</xpUpdateTime>
<grpPath/>

</XbeeCore>
<XbeeCore>

<xpExtAddr>00:08:A2:00:43:AE:22:86</xpExtAddr>
<devConnectwareId>00000000-00000000-000000FF-FF0004FE</devConnectwareId>
<cstId>2</cstId>
<grpId>2</grpId>
<xpNetAddr>16054</xpNetAddr>

XbeeCore

Digi Remote Manager Programmer Guide 290

<xpNodeType>1</xpNodeType>
<xpMfgId>4126</xpMfgId>
<xpDiscoveryIndex>1</xpDiscoveryIndex>
<xpStatus>1</xpStatus>
<xpUpdateTime>2014-06-04T02:14:00.000Z</xpUpdateTime>
<grpPath/>

</XbeeCore>

XbeeCore

Digi Remote Manager Programmer Guide 291

Example: Request current list of nodes from a gateway
The following example shows how to request the current list of nodes from the gateway at address
00:13:A2:00:00:00:00:00.

GET /ws/XbeeCore?condition=xpExtAddr='00:13:A2:00:00:00:00:00'&cache=false

XbeeCore

Digi Remote Manager Programmer Guide 292

Example: Request node discovery
The following example shows how to request a fresh discovery of all nodes for gateway
00:13:A2:00:00:00:00:00.

GET /ws/XbeeCore?condition=xpExtAddr='00:13:A2:00:00:00:00:00'&clear=true

XbeeCore

Digi Remote Manager Programmer Guide 293

Example: Add a test label to a node
The following example shows how to add a text label to a specified node.

GET /ws/XbeeCore

<XbeeCore>
<xpExtAddr>00:13:A2:00:00:00:00:00</xpExtAddr>
<xpUserMetaData>user data here</xpUserMetaData>

</XbeeCore>

Deprecated APIs

The following APIs have been deprecated and should not be used in new code. For compatibility,
deprecated APIs will be supported for a limited time, but code containing the deprecated APIs should
be modified to use a supported API as soon as possible.

Resource path Migrate to use

CarrierSubscripti
on

/ws/v1/streams/inventory?category=carrier

CarrierUsage /ws/v1/streams/history/{device_id}/carrier/{sim_id}/usage/
{usage_id}

data ws/FileData

DiaChannelDataF
ull

ws/DataPoint/dia/channel/<Device Id>/<instance>/<channel>

DiaChannelDataH
istoryFull

ws/DataPoint/dia/channel/<Device Id>/<instance>/<channel>

XbeeAttributeDat
aCore

ws/DataPoint/se/attr/<Device Id>/<XBee Address>/<Endpoint
Id>/<Cluster Type>/<Cluster Id>/<Attribute Id>

XbeeAttributeDat
aFull

ws/DataPoint/se/attr/<Device Id>/<XBee Address>/<Endpoint
Id>/<Cluster Type>/<Cluster Id>/<Attribute Id>

XbeeAttributeDat
aHistoryCore

ws/DataPoint/se/attr/<Device Id>/<XBee Address>/<Endpoint
Id>/<Cluster Type>/<Cluster Id>/<Attribute Id>

XbeeAttributeDat
aHistoryFull

ws/DataPoint/se/attr/<Device Id>/<XBee Address>/<Endpoint
Id>/<Cluster Type>/<Cluster Id>/<Attribute Id>

XbeeAttributeRep
ortingCore

Use the following SCI commands:

start_reports
get_local_reporting_configurations

XbeeEventDataCo
re

ws/DataPoint/se/event/<Device Id>/<XBee Address>/<Endpoint
Id>/<Cluster Type>/<Cluster Id>/<Attribute Id>

Digi Remote Manager Programmer Guide 294

Deprecated APIs

Digi Remote Manager Programmer Guide 295

Resource path Migrate to use

XbeeEventDataFu
ll

ws/DataPoint/se/event/<Device Id>/<XBee
Address>/<Endpoint Id>/<Cluster Type>/<Cluster
Id>/<Attribute Id>

XbeeEventDataHi
storyCore

ws/DataPoint/se/event/<Device Id>/<instance>/<channel>

XbeeEventDataHi
storyFull

ws/DataPoint/se/event/<Device Id>/<XBee Address>/<Endpoint
Id>/<Cluster Type>/<Cluster Id>/<Attribute Id>

DIA (device integration application)

The Device Integration Application (DIA) is an application software platform for the Digi International
family of gateway devices. Written in the Python programming language, DIA provides ready-to-use
software that can be extended to meet custom device connectivity requirements. You can enable this
feature using the DIA data service subscription.
Using DIA, you can build custom remote sampling solutions that report data through DIA. The reported
data is stored in DIA data streams, and Remote Manager users can query and monitor the streams
using the following format:

DataPoint/dia/channel/<Device ID>/<instance>/<channel>

SMS presentation data pushed to Remote Manager is also stored in DIA data streams.

Note This release supports storing the idigi_db presentation data for the DIA 1.3.8 or DIA 1.4 releases
as shipped. If you customize the python source code for the idigi_db presentation, Remote Manager
may not be able to parse the sample data uploaded from the device. If the idigi_db presentation
cannot be parsed by Remote Manager, the sample data is stored in a file rather than DIA data
streams.

Note Only the idigi_db presentation data is stored in the DIA data streams. RCI presentation data
queried via Remote Manager is not stored in DIA data streams.

Digi Remote Manager Programmer Guide 296

ISO 8601 date and duration reference

Date and Duration attributes must be expressed using ISO 8601 format. ISO 8601 is the International
Standard for the representation of dates and times:

n ISO 8601 date format
n ISO 8601 duration format

ISO 8601 date format
Every component shown in the example below must be present when expressing a date in ISO 8601
format; this includes all punctuation characters and the "T" character. Within a string, the "T"
indicates the beginning of the time element (directly following the date element). Although several
date expressions exist, Remote Manager supports only the following format:
Complete date plus hours, minutes and seconds:

YYYY-MM-DDThh:mm:ss[.mmm]TZD (eg 2012-03-29T10:05:45-06:00)

Where:

YYYY = four-digit year
MM = two-digit month (eg 03=March)
DD = two-digit day of the month (01 through 31)
T = a set character indicating the start of the time element
hh = two digits of an hour (00 through 23, AM/PM not included)
mm = two digits of a minute (00 through 59)
ss = two digits of a second (00 through 59)
mmm = three digits of a millisecond (000 through 999)
TZD = time zone designator (Z or +hh:mm or -hh:mm), the + or - values indicate how far
ahead or behind a time zone is from the UTC (Coordinated Universal Time) zone.

US time zone values are as follows:

EDT = -4:00
EST/CDT = -5:00
CST/MDT = -6:00
MST/PDT = -7:00
PST = -8:00

Note Use URL encoding (percent encoding)to include non-ASCII characters in an HTML
request.

Digi Remote Manager Programmer Guide 297

ISO 8601 date and duration reference ISO 8601 duration format

Digi Remote Manager Programmer Guide 298

ISO 8601 duration format
ISO 8601 Durations are expressed using the following format, where (n) is replaced by the value for
each of the date and time elements that follow the (n):

P(n)Y(n)M(n)DT(n)H(n)M(n)S

Where:

n P is the duration designator (referred to as "period"), and is always placed at the beginning of
the duration.

n Y is the year designator that follows the value for the number of years.
n M is the month designator that follows the value for the number of months.
n W is the week designator that follows the value for the number of weeks.
n D is the day designator that follows the value for the number of days.
n T is the time designator that precedes the time components.
n H is the hour designator that follows the value for the number of hours.
n M is the minute designator that follows the value for the number of minutes.
n S is the second designator that follows the value for the number of seconds.

For example:

P3Y6M4DT12H30M5S

Represents a duration of three years, six months, four days, twelve hours, thirty minutes, and five
seconds.

HTTP interface specification

All HTTP operations require basic authentication. The HTTP basic authentication user is set to the
device ID and the password is set to the device password.
A device ID and password can be generated by Remote Manager by performing a POST to
/ws/DeviceCore and specifying the <provisionId> and <dpCurrentConnectPw> values. See DeviceCore.

Create a device ID 300
Uploading data to Remote Manager 301
Data limits related to direct device uploads 301
Sending a message to a device 301
Retrieve files ready for the device 302
Retrieve a specific message for a device 302
Deleting a message from a device inbox 302
Example: Post sensor readings using Python 302

Digi Remote Manager Programmer Guide 299

HTTP interface specification Create a device ID

Digi Remote Manager Programmer Guide 300

Create a device ID
The following example shows the steps for creating a device ID used in a python program to upload a
data file to Remote Manager.
To create a device ID (if you haven't already):

1. Log into Remote Manager.
2. Click Admin > Account Settings > My Account.
3. Within the vendor information section, copy your vendor ID number if one exists. If one does not

exist, click Register Vendor or use the ws/DeviceVendor web service to create or retrieve a
vendor ID. See DeviceVendor for more information.

Note This example uses the vendor ID 0x0100001D. Replace the vendor ID with your own
vendor ID.

4. Click Documentation > API Explorer to use the explorer to generate a device ID.
5. Perform a POST on /ws/DeviceCore using the following specifics:

n Path: /ws/DeviceCore
n HTTP Method: POST
n Paste the following into the text area:

<DeviceCore>
<provisionId>0x0100001D</provisionId>
<dpCurrentConnectPw>DevicePassword123</dpCurrentConnectPw>
<dpRestrictedStatus>0</dpRestrictedStatus>
<grpPath />
<dpDescription>My Simple Python HTTP Data Upload Program</dpDescription>

</DeviceCore>

n <provisionId>: replace the Vendor ID (0x0100001D shown above) with your Vendor ID
n <dpCurrentConnectPw>: select a device password for your device to use
n <dpRestrictedStatus>: 0 means the device is allowed to send messages to Remote

Manager
n <grpPath/>: instructs Remote Manager to provision the new device ID in your root

group
n <dpDescription>: optional, but can only be set at creation time, so it's a good idea to

supply one
n <dpContact> and <dpLocation> can also be set at this time

6. Within the API Explorer, click Sendto execute the operation. Remote Manager responds with a
201 (displayed in the Web Services Responses window)

7. Open the response.
8. The <result> tag contains the ID of the newly created device ID.
9. Copy the contents of the <result><location> tag (for example: DeviceCore/12345/0) and paste

them into the Path field.
10. Select GET and then click the Send button.
11. Open the result and find the devConnectwareID; this is your new device ID.

HTTP interface specification Uploading data to Remote Manager

Digi Remote Manager Programmer Guide 301

12. Copy and paste the Python program shown in Python sample program into an editor, filling in
the device ID and device password used above.

13. Run the program.

Uploading data to Remote Manager
PUT /ws/Messaging/<path>

Body: Remote Manager message contents
Header:

n Content-Type: (optional)
n delete: (optional) See Delete below.
n deleted: (optional) See Delete below.

Parameters:
A client sends Remote Manager a message in the form of a file located at <path>. <path>. This can
be a simple file name, or a directory path. Remote Manager places the file in the specified path within
the device's Data Service which can be accessed via Remote Manager or through Web Services using
the /ws/FileData interface. The file name and the contents of the file are user defined.
The HTTP upload can specify a content type, for example (Content-Type: text/xml). If no content type
is specified in the header, the content type is implied by the file name extension (example:
filename.xml).
Returns:
If the upload is successful, the server sends an HTTP 200 status code, and it will also provide back a
list of messages that are waiting for the device in the payload. The format of the response is the same
as that returned by doing a GET to /ws/Messaging. See Retrieve files ready for the device and Retrieve
a specific message for a device for information on the structure of the information returned by
performing a GET to /ws/Messaging.

Data limits related to direct device uploads
The Simple HTTP Interface has the following limits:

n Number of data points allowed per request: 250
n Individual data point - maximum total size: 64KB
n Maximum upload size: 2MB

Sending a message to a device
The Simple HTTP Device Interface supports a simple mechanism that allows users to retrieve
messages from Remote Manager.
A folder for the device called inbox is created in the Remote Manager Data Services folders list.
Devices can retrieve a list of the contents of this folder, GET a message, and DELETE messages.

GET /ws/Messaging[/message1]

See Deleting a message from a device inbox

HTTP interface specification Retrieve files ready for the device

Digi Remote Manager Programmer Guide 302

Retrieve files ready for the device
A GET to /ws/Messaging (without specifying a file name) returns a comma delimited list of messages
waiting for the device in that device's inbox:

message1 name, message1 size, message 1 timestamp (milliseconds since epoch) …
message2 name, message2 size, message 2 timestamp (milliseconds since epoch)…
…

Retrieve a specific message for a device
A device can retrieve a specific message via a GET to /ws/Messaging/[messagename]. For example, a
GET to /ws/Messaging/message1 returns the contents of message1.
The device will be returned the exact contents of the payload with no wrapper. If the requested
message does not exist, the server will return a HTTP 404 message saying it does not exist.

Deleting a message from a device inbox
After a message has been processed by a device, the device may delete that message from the inbox.
This can be used as a way of confirming the delivery of the message to the device.
There are two ways to delete inbox messages:
On any GET or PUT request, an optional delete: header can be specified with a comma delimited list of
messages to delete. The response to these requests will contain a deleted: header with a list of
deleted messages.

DELETE /ws/Messaging/<message>

Deletes <message> from the device's inbox.
Additionally, a list of messages ready for the device are included in the response payload. See section
D.2.3 for information on the format.

Example: Post sensor readings using Python
The program uploads 10 sample readings. The results can be viewed in Remote Manager within the
Data Services, Data Streams view page. To open this page click the Data Services tab, then select the
Data Streams menu.

import httplib
import base64
import time
import random
"""
This program demonstrates the Simple HTTP Device Interface which
allows any client to upload data using only simple HTTP operations.
To use this program, first create a Device ID by:
POSTing to /ws/DeviceCore
<DeviceCore>
<provisionId>...insert vendor id here...</provisionId>
<dpCurrentConnectPw>...insert device password here...</dpCurrentConnectPw>
<dpRestrictedStatus>0</dpRestrictedStatus>
<grpPath/>

</DeviceCore>

HTTP interface specification Example: Post sensor readings using Python

Digi Remote Manager Programmer Guide 303

This will create a new unique Device ID with the specified password and
adds it to your account.
Fill in the info below and then execute the program.
This will upload 10 samples. The results can be viewed in Remote Manager by
navigating to the Data Services page and selecting Time Series data.
You can also view the results by using the
/ws/DiaChannelDataHistoryFull web service.
"""
fill these values in with your settings:
deviceCloudName = "https://remotemanager.digi.com"
deviceId = "00080002-00000000-02000434-C69F5998"
devicePwd = "DevicePasswordGoesHere"
fileName = "tempSample.xml"
###

def sendReading(reading):
statuscode = -1
statusmessage = "Request not sent"
header = "none"
response_body = "none"
try:

try:
deviceCloud = deviceCloudName
username = deviceId
password = devicePwd
filename = fileName
body = reading
create HTTP basic authentication string, this consists of
"username:password" base64 encoded
auth = base64.encodestring("%s:%s" % (username,password))[:-1]
Note, this is using Secure HTTP
webservice = httplib.HTTPS(deviceCloud)
to what URL to send the request with a given HTTP method
webservice.putrequest("PUT", "/ws/Messaging/%s" % (filename))
add the authorization string into the HTTP header
webservice.putheader("Authorization", "Basic %s" % (auth))
webservice.putheader("Content-type", "text/xml; charset=\"UTF-8\"")
webservice.putheader("Content-length", "%d" % len(body))
webservice.endheaders()
webservice.send(body)
get the response
statuscode, statusmessage, header = webservice.getreply()
response_body = webservice.getfile().read()

except Exception as e:
print "PUT of data reading threw an exception: %s" % e

finally:
pass

if statuscode == 200 or statuscode == 201:
it worked. We're done
return True

else:
print "***"
print "PUT to /ws/Messaging failed. Details:"
print "statuscode: %d" % (statuscode)
print "statusmessage: %s" % (statusmessage)
print "header: %s" % (header)
print "response: %s" % (response_body)
print "***"
return False

HTTP interface specification Example: Post sensor readings using Python

Digi Remote Manager Programmer Guide 304

if __name__ == "__main__":
sampleStart = "<idigi_data compact=\"True\">"
sampleTemplate = "<sample name=\"%s\" value=\"%s\" unit=\"%s\" />"
sampleEnd = "</idigi_data>"
This name can be changed to any name of the form: group.field
name = "pythonProgram.temp"
initialValue = 33.5
units = "F"
this generates some fake data for interesting viewing
for i in xrange (0, 10) :

value = initialValue + i + (random.random() - 0.5) * i
sample1 = sampleStart
sample1 += sampleTemplate % (name, value, units)
sample1 += sampleEnd
print sample1
sendReading(sample1)
time.sleep(2)

UI descriptor reference

Menu templates 306
Menu element 306
Automenu 308
Page templates 308
Page contents 309
Help templates 309

Digi Remote Manager Programmer Guide 305

Menu templates
Under the root (ui) element a navigation element contains the menu template. Each menu is
composed of a unique ID, name (display text), and associated page template name. The page and data
groups that the page handles are optional and are typically not supplied if the menu has sub-menus. If
the data groups the page handles are not listed and it has a page that is user defined it will parse the
page contents and generate the field itself.
Example:

<ui>
<navigation>

<menu id="test1" name="Test" page="test_page"
data="settings:mgmtconnection/*" />

<menu id="test2" name="Test page 2" required="true">
<menu id="test2child" name="Test Child" page="default_properties_page"

dataRootDefault="settings" required="false" data="doesNotExist/*/desc" />
</menu>
<menu id="advanced_cfg" name="Advanced Configuration" page=""

dataRootDefault="settings" data="" required="false" organizeByGroup="true"
readonly="false" indexBy="">

<automenu page="" dataRootDefault="settings" data="settings:*"
readonly="false" />

</menu>
</navigation>

</ui>

Menu element
The menu element represents a menu item. The menu hierarchy will be generated in the same
parent/child relationship as XML menu elements recursively.
For example:

<ui>
<navigation>

<menu id="example_menu1" name="Single root level item" required="true" />
<menu id="example_menu2" name="Parent root level item" required="true">

<menu id="example_menu3" name="Child menu" required="true">
<menu id="example_menu3" name="Sub-Child menu" required="true" />

</menu>
</menu>

</navigation>
</ui>

Rendors as:

Digi Remote Manager Programmer Guide 306

UI descriptor reference Menu element

Digi Remote Manager Programmer Guide 307

id (required)
The id attribute is required and must be unique. This is used to reference this menu item.

data
The data reference for a menu determines what property groups the associated page is responsible
for. Property groups are, in RCI terms, settings or state groups. They are specified in the menu as a
comma separated list of groups. Each group name can have an index (or dictionary name) specified in
a slashed notation. For example: 'serial/1' OR 'tcp_echo,udp_echo,http,https'. A special data value of
'*' is used to automatically generate menus for all property groups not already specified explicitly in
the other menu items. This should be the last menu item specified and is typically placed under an
'Advanced' parent menu item.

name (required)
The name attribute is the label for the menu. It will be displayed in the menu and at the header of the
property page when the menu is selected.

page
The page attribute is optional and used to specify what to render in the properties page when the
menu item is selected. This may be either a Remote Manager provided page, like file management, or
a custom page defined later in this document. If this is left blank then the property page will either be
blank itself or will list any children menu items. If you want a page that lists all settings designated by
the "data" attribute set this value to "default_properties_page" which is a pre-defined Remote
Manager properties page. This is the equivalent of creating a page with the contents being just an
<unprocessed/> element (see the Page Contents section for more information).

required
Boolean defining if this menu should be displayed even if the data listed in the data attribute does not
exist. If this is set to false (default) and the query_settings of the device does not contain any of the
properties listed in the data this menu will be removed.

dataRootDefault
Default root for the data fields when not explicitly specified (optional, settings is default).

UI descriptor reference Automenu

Digi Remote Manager Programmer Guide 308

organizeByGroup
Determines if page information is organized by group or in the order specified in data.

indexBy
Default root for the data fields when not explicitly specified (optional, settings is default).
The automenu will render all settings for a device that has not been reserved by a different menu item
via the data attribute.

Automenu
The automenu renders all settings for a device that have not been reserved by a different menu item
via the data attribute.
Example

id
An optional unique identifier for this menu.

dataRootDefault
Default root for the data fields when not explicitly specified (optional, settings is default).

data
Comma separated list of the page's data fields (optional).

readonly
If all pages should render read-only.

Page templates
HTML templates.
Example:

<ui>
<content>

<page id="test_page" help="test_page_help">
My IP setting:
<property rciId="settings:mgmtconnection/1/serverAddress" />

UI descriptor reference Page contents

Digi Remote Manager Programmer Guide 309

<hr />
<h1>Advanced:</h1>
<unprocessed>

<exclude rciId="settings:mgmtconnection/1/timedConnectionPeriod" />
</unprocessed>

</page>
</content>

</ui>

id
The id attribute is required and must be unique. This is used as a reference in the menus.

help
A reference to the id attribute of a help element shared within the content parent.

Page contents
The page contains xhtml and allows the following tags: b, p, i, s, a, img, table, thead, tbody, tfoot, tr, th,
td, dd, dl, dt, em, h1, h2, h3, h4, h5, h6, li, ul, ol, span, div, strike, strong, sub, sup, pre, del, code,
blockquote, strike, br, hr, small, big, property, unprocessed, exclude. Most of these tags are standard
HTML and will be rendered accordingly in the page area of the device properties when its
corresponding menu is selected.

<page id="test_page">
My Remote Manager server:
<property rciId="settings:mgmtconnection/1/serverAddress" />
<hr />
<h1>Advanced:</h1>
<unprocessed>

<exclude rciId="settings:mgmtconnection/1/timedConnectionPeriod" />
</unprocessed>

</page>

Unprocessed tag
All data that is reserved by the menu pointing to this page that has not already been displayed by a
property tag will be listed. There is an optional 'exclude' element as a child which will remove specific
settings from this list.

<page id="test_page">
<h1>Advanced:</h1>
<unprocessed>

<exclude rciId="settings:mgmtconnection/1/timedConnectionPeriod" />
</unprocessed>

</page>

Help templates
HTML templates

<ui>
<content>

UI descriptor reference Help templates

Digi Remote Manager Programmer Guide 310

<help id="test_page_help">
Help
<h1 style="color:red">lots of HTML options!</h1>

</help>
</content>

</ui>

Help templates contain an id attribute that are used as reference. The contents are xhtml which will
be displayed in a pop-up when the help option is clicked within the properties page.

	Get started
	About Remote Manager programming
	Connecting applications to Remote Manager
	Data flow from devices to customer applications

	Remote Manager concepts
	Subscriptions
	Device IDs
	Device ID Assignments
	Full-length device IDs
	Abbreviated device IDs
	System-generated device IDs
	Device IDs based on CDMA addresses
	Device IDs based on MAC addresses
	Device IDs based on GSM IMEI

	Embedded device development
	About data services
	Data collections and files
	Home collection tilde (~) character

	Device information caching
	Using cached data to respond to requests
	Limiting information returned from requests

	Web services HTTP client applications
	Authentication best practices
	Using a web browser
	Using the API explorer
	Using a Python script
	Using a Java program

	Web services conventions and versioning
	URL specifications
	Default media format
	JSON formatting
	XML formatting

	Supported HTTP headers
	Request headers
	Response headers

	Pagination options
	Pagination parameters
	Using pagination parameters

	CRUD conventions
	Post operation
	Get operation
	Put and Post operations
	Delete operation

	URL encoding (percent encoding)
	Best practice: Use compound queries
	Best practice: Wrap multiple queries into a single request
	Best practice: Reuse HTTP sessions

	Web services reference
	openapi
	URI
	Formats

	Query language for v1 APIs
	Query language summary
	Specify values in query conditions
	Specify operators in query conditions
	Example Queries

	Deprecated APIs
	Alarm
	URI
	Formats
	Elements
	almRuleConfig
	almScopeConfig
	Example: List all alarms
	Example: Get details for an alarm
	Example: Create data point condition alarm
	Example: Create a DIA channel data point condition alarm
	Example: Create a smart energy missing data point alarm
	Example: Create a subscription usage alarm

	AlarmStatus
	URI
	Formats
	Elements
	Example: Get statuses for all alarms
	Example: Acknowledge a fired alarm
	Example: Reset a fired alarm

	AlarmStatusHistory
	URI
	Formats
	Elements
	Query parameters
	Example: Get a list of all alarm statuses over time
	Example: Get alarm status history for a specific alarm

	AlarmTemplate
	URI
	Formats
	Elements
	Alarm template types
	almtScopeOptions
	almtRules
	Example: List all alarm templates

	CarrierAuth
	URI
	Formats
	Elements
	Example: Get a list of carrier accounts
	Example: Configure carrier account credentials
	Example: Update a carrier account
	Example: Delete a carrier account

	DataPoint
	URI
	Formats
	Elements
	Parameters
	Direct device uploads

	DataStream
	URI
	Formats
	Elements
	Parameters

	DeviceCore
	URI
	Formats
	Elements

	DeviceInterface
	URI
	Formats
	Elements
	Example: Get a list of devices and associated networks

	DeviceMetaData
	URI
	Formats
	Elements

	DeviceVendor
	URI
	Formats
	Elements

	DeviceVendorSummary
	URI
	Formats
	Elements

	FileData
	URI
	Formats
	Elements
	Example: Get all file metadata
	Example: Get files based on conditions
	Example: Get files and embed contents in the result

	FileDataCore
	URI
	Format
	Elements

	FileDataHistory
	URI
	Formats
	Elements

	Group
	URI
	Formats
	Elements

	Monitor
	URI
	Formats
	Elements
	Example: List all monitors
	Example: Create an HTTP monitor
	Example: Create a TCP monitor
	Example: Recover a disabled monitor
	Example: Delete a monitor
	Example: Delete monitors based on conditions
	Example: Create a polling monitor
	Example: Monitor Profile Manager status with a push monitor
	HTTP/HTTPS transport protocol
	TCP transport protocol

	NetworkInterface
	URI
	Formats
	Elements

	NetworkInterfaceSubscriptionCore
	URI
	Formats
	Elements

	Remote command interface (RCI)
	Schedule
	URI
	Formats
	Elements
	Example: Schedule device reboot

	SCI (Server command interface)
	SCI request
	SCI targets
	Synchronous requests
	Asynchronous request
	Ping request
	Available operators
	SMS messages
	Wait for Device to Connect
	Send a Disconnect
	Satellite requests
	SM/UDP

	security
	URI
	Formats
	Elements

	Task
	URI
	Formats
	Elements
	Example: Get a list of all tasks
	Example: Get details for a task
	Example: Upload a task definition
	Example: Get a list of jobs for a schedule

	Task template
	Elements

	v1/alerts
	URI
	Formats
	Fields
	Example: Datapoint condition alert
	Example: List alerts
	Example: Create one or more alerts

	v1/devices
	URI
	Formats
	Device fields
	Channel, management, and metric fields
	Parameters
	Example: List all devices
	Example: List all devices using query by tags
	Example: Get a single device
	Example: Create a device
	Example: Create multiple devices
	Example: Edit a device
	Example: List device channels
	Example: Delete a device

	v1/events
	URI
	Formats

	v1/groups
	URI
	Formats
	Parameters

	v1/health_configs
	URI
	Formats
	Fields
	Parameters
	Example: Get a summary of the health_config API
	Example: Get a list of health configurations for your account
	Example: Get a specific health configuration in XML
	Example: Disable a health configuration
	Example: change a health configuration

	v1/jobs
	URI
	Formats
	Parameters
	Query fields
	Query operators
	Query examples

	v1/metadata
	URI
	Formats

	v1/monitors/history
	Polling cursor
	URI
	Formats
	Parameters
	Example: Query polling monitor history

	v1/settings
	URI
	Formats

	v1/reports
	URI
	Formats
	Parameters
	Query fields
	Query operators
	Query examples
	Example: Get a summary of the reports API
	Example: Get a report of fired alarms
	Example: Get a health status report
	Example: Get connection status history report
	Example: Get monitor status report

	v1/streams
	URI
	Formats
	Stream fields
	History fields
	Roll-up fields
	Parameters
	Direct device uploads
	Example: List all streams
	Example: Get a stream
	Example: Create a stream
	Example: Create multiple streams
	Example: Add multiple data points to a data stream
	Example: Edit a stream
	Example: Delete a stream
	Example: Get data history for a stream
	Example: Delete data points for a stream
	Example_Get rollup data for a stream
	Example: Get carrier usage information

	v1/users
	URI
	Formats
	Fields

	XbeeAttributeCore
	URI
	Formats
	Elements
	xeDeviceVersion
	Example: Identify node attributes in your home area networks (HANs)

	XbeeAttributeFull
	URI
	Formats
	Elements
	Example: List ZigBee full attrbutes

	XbeeClusterCore
	URI
	Formats
	Elements
	xeDeviceVersion
	Example: List all clusters

	XbeeCore
	URI
	Formats
	Elements
	Parameters
	Example: List all nodes
	Example: Request current list of nodes from a gateway
	Example: Request node discovery
	Example: Add a test label to a node

	Deprecated APIs
	DIA (device integration application)
	ISO 8601 date and duration reference
	ISO 8601 date format
	ISO 8601 duration format

	HTTP interface specification
	Create a device ID
	Uploading data to Remote Manager
	Data limits related to direct device uploads
	Sending a message to a device
	Retrieve files ready for the device
	Retrieve a specific message for a device
	Deleting a message from a device inbox
	Example: Post sensor readings using Python

	UI descriptor reference
	Menu templates
	Menu element
	id (required)
	data
	name (required)
	page
	required
	dataRootDefault
	organizeByGroup
	indexBy

	Automenu
	id
	dataRootDefault
	data
	readonly

	Page templates
	id
	help

	Page contents
	Unprocessed tag

	Help templates

