
Wireless Vehicle Bus Adapter

Application Developer Guide

Revision history—90001930

Revision Date Description

B December 2013 Updated RF exposure statement and Industry Canada
certifications statement.

C March 2014 Corrected errors in the summary table of WVA web
services and clarified text in introductions to web services
URI descriptions. Updated URI list to note these URIS as
protected: /ws/config/factory_default
/ws/config/settings_group/instance_specifier
/ws/files/volume/path/filename
/ws/password
Corrected titles of several URIs.
Updated URI /ws/state/state_path/element_name to
have check boxes for GET, XML, and JSON.

D November 2014 Updated to add URIs the vehicle/dtc URIs for fault codes
and any new and changed features for WVA, including Wi-Fi
Direct, additional Python programmability, file
management features.

E October 2017 Rebranded and edited the document.

F June 2019 Updated Event Channel service information. See
Assumptions regarding the Event Channel and Event
Channel service configuration.

Trademarks and copyright
Digi, Digi International, and the Digi logo are trademarks or registered trademarks in the United
States and other countries worldwide. All other trademarks mentioned in this document are the
property of their respective owners.
© 2019 Digi International Inc. All rights reserved.

Disclaimers
Information in this document is subject to change without notice and does not represent a
commitment on the part of Digi International. Digi provides this document “as is,” without warranty of
any kind, expressed or implied, including, but not limited to, the implied warranties of fitness or
merchantability for a particular purpose. Digi may make improvements and/or changes in this manual
or in the product(s) and/or the program(s) described in this manual at any time.

Warranty
To view product warranty information, go to the following website:
www.digi.com/howtobuy/terms

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 2

http://www.digi.com/howtobuy/terms

Send comments
Documentation feedback: To provide feedback on this document, send your comments to
techcomm@digi.com.

Customer support
Digi Technical Support: Digi offers multiple technical support plans and service packages to help our
customers get the most out of their Digi product. For information on Technical Support plans and
pricing, contact us at +1 952.912.3444 or visit us at www.digi.com/support.

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 3

mailto:techcomm@digi.com
http://www.digi.com/support

Contents

WVA Application Developer Guide
Programmable aspects of the Wireless Vehicle Bus Adapter 7
Web services 7
Programming resources 7

WVA components and interfaces
Connector pinout 10

Pin locations 10
Pin signals 10
Additional wiring and connection resources 10

Available interfaces on the wiring harness 10
Recommended CAN simulator model 11
Interfaces: firmware, software, and hardware 11

Firmware and software interfaces 12
Hardware interfaces 12

Memory and development specifications 13
Regulatory and safety statements 13

RF exposure statement 13
FCC Part 15 Class B certifications and regulatory information (USA Only) 13
Industry Canada (IC) certifications 14
Safety statements 14

Certifications 15
Automotive certifications 15
International EMC (Electromagnetic Emissions/Immunity/Safety) standards 15
Environmental certifications 15
NEMA certifications/IP rating 15

Managing web services
Data flow using the web services 17
Web services terms 17
RESTful interface principles in the web services 18

Providing access to individual resources 18
Granularity based on independence of resources 18
Leveraging HTTP operations 18
Leveraging HTTP security 19
Support for multiple content types 19
WVA security and protected URIs 19

Access and navigate the web services 19

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 4

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 5

Access web services from a web browser 20
Access web services from an application 20

Web services URIs
Index of web services resources 22
Device web services root (/) 26

URI path 26
Supported request methods 26
Supported content types 26

Translated vehicle bus data 27
Translated vehicle bus data URIs 27
vehicle 28
vehicle/data 29
vehicle/data/element_name 30
vehicle/dtc 32
vehicle/dtc/can0_active 33
vehicle/dtc/can0_active/ecu_reference 34
vehicle/dtc/can0_inactive 35
vehicle/dtc/can0_inactive/ecu_reference 36
vehicle/dtc/can1_active 37
vehicle/dtc/can1_active/ecu_reference 38
vehicle/dtc/can1_inactive 39
vehicle/dtc/can1_inactive/ecu_reference 40
vehicle/ecus 41
vehicle/ecus/ecu_reference 42
vehicle/ecus/ecu_reference/ecu_info_item 43

Asynchronous data delivery registration: subscriptions, alarms, and the Event Channel 44
Subscriptions 44
Alarms 44
Event Channel 44
URIs for managing subscriptions and alarms 44
subscriptions 45
subscriptions/short_name 46
alarms 48
alarms/short_name 49
Event channel 51

Hardware interfaces 54
Hardware interface URIs 54
hw 55
hw/buttons 56
hw/buttons/button_name 57
hw/leds 58
hw/leds/led_name 59
hw/time 60
hw/buzzer 61
hw/fw_update 62
hw/reboot 63

State interfaces 64
State interface URIs 64
state 65
state/state_path (containing subgroups or instances) 66
state/state_path (containing elements) 67
state/state_path/element_name 68

Filesystem interfaces 69

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 6

Filesystem interface URIs 69
files/volume/path 70
files/volume/path?type=dir 71
files/volume/path/filename 72

Configuration interfaces 73
Configuration interface URIs 73
config 74
config/settings_group 75
config/settings_group (with instances) 76
config/settings_group/instance_specifier 77
config/factory_default 78

Password interface 79
password 80

HTTP response codes 81
200 (“OK”) 81
400 (“Bad Request”) 81
401 ("Unauthorized") 81
403 (“Forbidden”) 81
404 (“Not Found”) 81
405 (“Method Not Allowed”) 81
406 (“Not Acceptable”) 82
414 (“Request-URI Too Long”) 82
415 (“Unsupported Media Type”) 82
500 (“Internal Server Error”) 82
503 (“Service Unavailable”) 82

Programming
WVA file system 84

Important directories 84
Access/browse the filesystem from device interfaces 84

Demo application and resources for Android developers 84
Real time clock 84
Security features in the WVA 84

Security for the Wi-Fi communications channel 85
Security for activities performed over the Wi-Fi communications channel 85
Modifying the security model 86

Power management 86

WVA Application Developer Guide

This guide covers programmable aspects of the Wireless Vehicle Bus Adapter (WVA) and the web
services, the primary programming interface for the WVA and vehicle data.

Programmable aspects of the Wireless Vehicle Bus Adapter
The WVA has several programmable aspects:

n Hardware, including LEDs, button, buzzer, real time clock, accelerometer

n Vehicle bus interface

n Device management, including firmware updates and rebooting the device

n Configuration settings

The WVA components and interfaces, Managing web services and Programming sections provide more
details on these programmable aspects of the WVA.

Web services
The primary interface for handling vehicle data via the WVA is the web services. Web services are
resources, organized in a RESTful interface, that provide the primary method for handling vehicle data
from the WVA. The web services allow users and applications to access andmanipulate units of data in
the WVA system, particularly over a local network. The Managing web services section gives an
overview of the web services and the Web services URIs section describes each resource.

Programming resources
Programming resources that are available for the WVA, or that you may want to locate or purchase,
include the following:

n The WVA demo application and its source code, available from the Documentation section on
the WVA support page.

n The WVA Android Library tutorial, available from the Documentation section on the WVA
support page.

n SAE specifications for J1587/J1708 and J1939/CAN vehicle bus protocols. These protocols are
available for purchase from the SAE International website.

n RESTful interface resources: The web services are based on RESTful interface principles, noted
in RESTful interface principles in the web services. As needed, consult available primers and
tutorials on RESTful interfaces.

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 7

https://www.digi.com/resources/documentation/digidocs/90001929/default.htm#Task/T_run_demoapp.htm%3FTocPath%3DRun%2520the%2520WVA%25C2%25A0demo%2520application|_____0
https://www.digi.com/support/productdetail?pid=5594
https://www.digi.com/resources/documentation/digidocs/90001431-13/default.htm
https://www.digi.com/support/productdetail?pid=5594
https://www.digi.com/support/productdetail?pid=5594
http://www.sae.org/

WVA Application Developer Guide Programming resources

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 8

n HTTP/HTTPS: Using the web services requires an understanding of HTTP/HTTPS and the
common operations GET, PUT, POST, and DELETE. As needed, consult available primers and
tutorials on HTTP/HTTPS. In this guide, see also the following topics about HTTP operation for
the WVA and web services:
l Leveraging HTTP operations

l Leveraging HTTP security

l Security features in the WVA

WVA components and interfaces

The Wireless Vehicle Bus Adapter (WVA) is a compact on-board hardware device measuring 2.33 in x
2.15 in (5.9 cm x 5.5 cm) that uses the J1708/J1939 protocols to provide vehicle data via standard Wi-
Fi and web services. For more information on the WVA hardware and communications specifications,
see the Specifications tab of the WVA product page.
This section provides an overview of the WVA device features and interfaces, and lists regulatory
statements and certifications for this product.

Connector pinout 10
Available interfaces on the wiring harness 10
Recommended CAN simulator model 11
Interfaces: firmware, software, and hardware 11
Memory and development specifications 13
Regulatory and safety statements 13
Certifications 15

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 9

https://www.digi.com/products/xbee-rf-solutions/boxed-rf-modems-adapters/wireless-vehicle-bus-adapter#specifications

WVA components and interfaces Connector pinout

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 10

Connector pinout
The connector on the WVA is a 9-pin Deutsch connector with the following pin orientation and pinout.

Pin locations

Pin signals

Pin Signal

A Power (-)

B Power (+)

C J1939/CAN 1 HI (+)

D J1939/CAN 1 LO (-)

E J1939/CAN Shield

F J1587/J1708 (+)

G J1587/J1708 (-)

H J1939/CAN 2 HI (+)

J J1939/CAN 2 LO (-)

Additional wiring and connection resources
For additional wiring information, such as wire color and locations, refer to the wiring schematics for
the vehicle or vehicles in which you are deploying the WVA.
For recommended connection methods, consult the vehicle manufacturer.

Available interfaces on the wiring harness
The wiring harness for the WVA is available for purchase separately from Digi. The Digi part number is
76000931.
The wiring harness uses a 9-pin Deutsch connector. See Connector pinout for pin locations and signals.

https://www.digi.com/products/models/76000931

WVA components and interfaces Recommended CAN simulator model

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 11

The following interfaces are available on the wiring harness. Labels on the wires indicate their
interface function. A DB-9 connector is provided, and wired for compatibility with the recommended
CAN bus simulator.

n Power
l Ground and 12 V power for powering the WVA

l Ground and 12 V power for powering a CAN simulator (via the DB-9 connector)

n J1939/CAN+ and J1939/CAN- (via the DB-9 connector)

n A second J1939/CAN+ and J1939/CAN-

n J1587/J1708+ and J1587/J1708-

Recommended CAN simulator model
For the CAN simulator, Digi recommends the following model and part number, which you can order
from the AU Group Electronics on-line store:

n Model: Au SAE J1939 Simulator-Gen II 1.00A (Engine Basic Edition)

n Part number: SIMJ1939-001
The CAN simulator connects directly to the WVA wiring harness.
You can also purchase cabling to connect the CAN simulator to a PC from AU Group Electronics.

Interfaces: firmware, software, and hardware
This section includes information about the WVA interfaces.

http://auelectronics.com/System-J1939Simulator.htm
http://auelectronics.com/

WVA components and interfaces Interfaces: firmware, software, and hardware

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 12

Firmware and software interfaces

Specification Value

Configuration andmanagement interface Web user interface.
See Configure the WVA section in the the
Wireless Vehicle Bus Adapter Getting Started
Guide for more information.

Programming interface RESTful web services interface. See Managing
web services.

Hardware interfaces

Specification Value

Internal sensors Three internal sensors are included:
n Vibration: Wakes the WVA from sleepmode.

n Voltage: Wakes the WVA from sleepmode.

n Accelerometer: Available to be sampled by custom
Python applications.

See Power management for configuration information.

Button The button on the device performs several functions:
n In Wi-Fi Direct mode, the button can be configured to

establish a Wi-Fi Direct connection. Press and hold the
button for 10 seconds to reset the WVA to factory
defaults.

n Silences the buzzer/audible alarm. This is applicable
only when the alarm is enabled through applications.

n Wakes the WVA from sleeping. See Power
management for configuration information.

LEDs Two LEDs:
n Power: Green when power is applied to unit.

n Application-defined: Amber when enabled. This
LED's use is controlled through the application
programming interface (API).

LEDs are controlled programmatically through the web
services resource hw/leds/led_name.

https://www.digi.com/resources/documentation/digidocs/90001929/default.htm#Task/T_configure_wva.htm%3FTocPath%3DConfigure%2520the%2520WVA|_____0

WVA components and interfaces Memory and development specifications

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 13

Memory and development specifications

Specification Value

Total memory 128 MB flash, 64 MB RAM.

Available user space 20 MB flash.

Regulatory and safety statements
The following regulatory and safety statements apply to the WVA.

RF exposure statement
This equipment complies with FCC radiation exposure limits set forth for an uncontrolled
environment. This equipment should be installed and operated with a minimum distance of 20 cm
between the radiator and persons. This transmitter must not be co-located or operating in
conjunction with any other antenna or transmitter, except in accordance with FCC multi-transmitter
product procedures.

FCC Part 15 Class B certifications and regulatory information (USA
Only)
All Wireless Vehicle Bus Adapter products comply with the FCC Part 15 Class B standards cited in this
section:

Radio Frequency Interface (RFI) (FCC 15.105)
This device has been tested and found to comply with the limits for Class B digital devices pursuant to
Part 15 Subpart B, of the FCC rules. These limits are designed to provide reasonable protection
against harmful interference in a residential environment. This equipment generates, uses, and can
radiate radio frequency energy, and if not installed and used in accordance with the instruction
manual, may cause harmful interference to radio communications. However, there is no guarantee
that interference will not occur in a particular installation. If this equipment does cause harmful
interference to radio or television reception, which can be determined by turning the equipment off
and on, the user is encouraged to try and correct the interference by one or more of the following
measures:

n Reorient or relocate the receiving antenna.

n Increase the separation between the equipment and receiver.

n Connect the equipment into an outlet on a circuit different from that to which the receiver is
connected.

n Consult the dealer or an experienced radio/TV technician for help.

Labeling requirements (FCC 15.19)
This device complies with Part 15 of FCC rules. Operation is subject to the following two conditions: (1)
this device may not cause harmful interference, and (2) this device must accept any interference
received, including interference that may cause undesired operation.
If the FCC ID is not visible when installed inside another device, then the outside of the device into
which the module is installed must also display a label referring to the enclosedmodule FCC ID.

WVA components and interfaces Regulatory and safety statements

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 14

Modifications (FCC 15.21)
Changes or modifications to this equipment not expressly approved by Digi may void the user’s
authority to operate this equipment.

Industry Canada (IC) certifications
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to
the following two conditions:
(1) this device may not cause interference, and (2) this device must accept any interference, including
interference that may cause undesired operation of the device.
Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts
de licence. L'exploitation est autorisée aux deux conditions suivantes:
(1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout
brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le
fonctionnement.

Safety statements

5.10 ignition of flammable atmospheres

Warnings for use of wireless devices

CAUTION! Observe all warning notices regarding use of wireless devices.

Potentially hazardous atmospheres
Observe restrictions on the use of radio devices in fuel depots, chemical plants, etc. and areas where
the air contains chemicals or particles, such as grain, dust, or metal powders, and any other area
where you would normally be advised to turn off your vehicle engine.

Safety in hospitals
Wireless devices transmit radio frequency energy andmay affect medical electrical equipment. Switch
off wireless devices wherever requested to do so in hospitals, clinics, or healthcare facilities. These
requests are designed to prevent possible interference with sensitive medical equipment.

Pacemakers
Pacemaker manufacturers recommended that a minimum of 15 cm (6 inches) be maintained between
a handheld wireless device and a pacemaker to avoid potential interference with the pacemaker.
These recommendations are consistent with independent research and recommendations by Wireless
Technology Research.

Persons with pacemakers:
n Should always keep the device more than 15 cm (6 inches) from their pacemaker when turned

ON.

n Should not carry the device in a breast pocket.

n If you have any reason to suspect that the interference is taking place, turn OFF your device.

WVA components and interfaces Certifications

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 15

Certifications
The following certifications apply to WVA.

Automotive certifications
The WVA is certified for the following automotive certifications:

n ISO-10452

n ISO-10605

n SAE 1455

n ISO 7637-2, -3

International EMC (Electromagnetic Emissions/Immunity/Safety)
standards
The WVA is certified for the following International EMC standards:

n Emissions: CE, FCC PART 15 (Class B), CISPR25, EN5502

n Immunity: EN55024, EN301, SAE J1113

n Safety: UL 60950-1, EN 60950-1, CSA 22.2 No. 60950

Environmental certifications
The WVA has been tested for the following environmental certifications:

n Automotive Environmental tests per SAE 1455.

n Resistant to the following chemicals, per SAE J1455 Section 4.4:
l Gasoline

l Fuel additives

l Diesel fuel

NEMA certifications/IP rating
The WVA is certified with an IP rating of IP54.

Managing web services

These topics describe the WVA web services, define key terms, and show how to access and navigate
the web services.

Data flow using the web services 17
Web services terms 17
RESTful interface principles in the web services 18
Access and navigate the web services 19

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 16

Managing web services Data flow using the web services

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 17

Data flow using the web services
The following figure shows how a custom application, or user using a web browser, can use the web
services to obtain device and vehicle information.

Web services terms
The table below includes web services terms and concepts.

Managing web services RESTful interface principles in the web services

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 18

Term Description

ECU Engine control unit. ECUs are intelligent components on a vehicle bus that may
asynchronously push data, or respond to vehicle bus protocol queries. For
example, an engine or a transmission control device.

URI Uniform resource identifier. In this document, a URI is written relative to the
root of the web services tree in the device.
The elements in this document use a URL in this format: https://<device_
ip>/ws/<uri>
where <device_ip> is replaced with the IP address of the WVA device, and <uri>
is replaced with the resource identifier.
See Index of web services resources for a list of the web services resource
identifiers.

VIN Vehicle identification number.

RESTful interface principles in the web services
The web services are a RESTful interface. Key principles used by the web services include the
following.

Providing access to individual resources
A key principle in the web services system is providing access to individual resources. Manageable
items in this system, including data elements and control endpoints, have unique identifiers and are
arranged in a hierarchy. Using this system, you can locate any item in the web services system by its
URI.

Granularity based on independence of resources
For many items that can be requested and returned by the web services system, reading, and in some
cases writing, an element as an individual entity is a natural operation. For other items, dividing
groups of objects into individual fields may be unreasonable, because the web services system may be
incapable of manipulating the objects independently. For such items, the “resource” at the web
services level is a collection of the related values. Where possible, the web services system makes
available individual data elements.

Leveraging HTTP operations
The HTTP specification allows for a variety of useful operations, including GET, PUT, POST, and
DELETE. The RESTful interface maps logical operations to HTTP request types. For example:

n Use GET to perform a “read” operation.

n Use PUT to perform a “write” operation.

n POST is reserved for control elements with an RPC-style interface, such as passing parameters
and getting a response.

n Use DELETE to remove elements capable of being deleted.

https://device_ip/ws/uri
https://device_ip/ws/uri

Managing web services Access and navigate the web services

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 19

Leveraging HTTP security
The only security specified in web services is HTTP-related access control. The web services provide
access to URLs with the same level of security as any web page in the system.
If HTTP is enabled:

n There is no access-level security by default.

n There is encryption, but no other security by default.

If basic authentication is enabled for the WVA, the web services user must enter the WVA username
and password to access the web services system. The web services user may be an application or a
user at a browser.

n username: admin

n default password: admin
For more information on the different types and levels of security implemented in the WVA, see
Security features in the WVA.

Support for multiple content types
Web tools support a variety of methods for expressing data. The web services interface is sensitive to
the content type-related HTTP headers in order to determine the format of a request and the format
to use for a response. The same information is conveyed, and only the data format may change
between the content types.
To request a specific format, an HTTP request includes an Accept header, with a MIME-type matching
the desired format. All successful responses include a Content-Type header that indicates the MIME
type of the response payload. Available content types are:

n HyperText Markup Language (HTML): text/html

n Extensible Markup Language (XML): application/xml

n JavaScript Object Notation (JSON): application/json

See the Index of web services resources for indicators as to which types are applicable to which URIs.

WVA security and protected URIs
On the WVA, some URIs are password-protected. The Index of web services resources indicates
password-protected URIs by an x in the Protected URI column. Protected URIs are intended to be
used only by administrators to configure the device. Other URIs are available to an application for
normal operations.
If basic authentication is enabled, PUT and DELETE operations applied to a protected URI require
authentication. Unprotected URIs do not require authentication. A GET operation to any URI also does
not require authentication.
On any non-WVA devices that implement web services, all methods on all URIs require authentication
if enabled.
Generally, interface devices using web services, such as a smart phone or tablet, should not have
access to the resources that require authentication.

Access and navigate the web services
There are two ways to access and navigate the web services:

Managing web services Access and navigate the web services

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 20

n From a web browser. This use is intended as a means of familiarizing yourself with the web
services structure and available resources.

n Through requests from an application. This is the most typical use of the web services.

Access web services from a web browser
1. In the address bar of the browser, enter https://<device address>/ws, where <device address>

is replaced with the IP address of the WVA device. For example, the following command
accesses the web services for the WVA at the default address in Infrastructure mode,
192.168.100.1: https://192.168.100.1/ws

2. A certificate management warning statement from the web browser appears. Click Proceed
Anyway.

3. The web services interface appears.

4. Click the links to navigate among the subgroups of web services resources, or URIs. Note that
several resources are password-protected. These resources display a login prompt. For the
username and password, enter adminand admin. The complete list of protected resources is
listed in the Protected URI column in the Index of web services resources.

Access web services from an application
To access the web services programmatically, see the examples in the Index of web services
resources. The individual resource demonstrates the resources in a variety of content types.
See also the WVA demo application source code, available from the Documentation section on the
WVA support page.
As noted in the discussion of WVA security and protected URIs in RESTful interface principles in the
web services, some resources are password-protected and are intended to be used by administrators
to configure the device.

https://www.digi.com/resources/documentation/digidocs/90001929/default.htm#Task/T_run_demoapp.htm%3FTocPath%3DRun%2520the%2520WVA%25C2%25A0demo%2520application|_____0
https://www.digi.com/support/productdetail?pid=5594

Web services URIs

This section includes information on all of the web services URIs and describes the Event Channel.

Index of web services resources 22
Device web services root (/) 26
Translated vehicle bus data 27
Asynchronous data delivery registration: subscriptions, alarms, and the Event Channel 44
Hardware interfaces 54
State interfaces 64
Filesystem interfaces 69
Configuration interfaces 73
Password interface 79
HTTP response codes 81

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 21

W
eb

servicesURIs
Index

ofw
eb

servicesresources

W
irelessVehicle

BusAdapter(W
VA)Application

DeveloperGuide
22

Index of web services resources
The following table is a summary of the web services resources, listed by their URIs in alphabetical order. Click the URI name in the Device Relative URL
column to jump to the detailed description of the URI.
In the URI name, strings in italics are placeholders to be replaced with appropriate values for the specific operation.
Protected URI: For URIs with an x in the Protected URI column, the URI is read-only to applications and read/write to administrators.

Note config/ws_events and config/wireless/wlan0 are the only settings_groups that are not protected.

Device relative URL
(web services path + element URI) Action

Protected
URI

Request methods Content types

GET PUT POST DELETE HTML XML JSON

/ws Get URI list of web services categories. ✓ ✓ ✓ ✓

/ws/alarms Get URI list of web service alarm
records.

✓ ✓ ✓ ✓

/ws/alarms/short_name Manipulate a web service alarm record. ✓ ✓ ✓ ✓ ✓

/ws/config Get URI list of configuration setting
groups.

✓ ✓ ✓ ✓

/ws/config/factory_default Reset all settings groups to their
factory defaults.

✓ ✓

/ws/config/settings_group Manipulate a single settings record, for
settings without an instance specifier.

✓ ✓ ✓ ✓ ✓

/ws/config/settings_group (with
instances)

Get URI list of known instance
specifiers, for settings that have them.

✓ ✓ ✓ ✓

ws/config/settings_group/instance_
specifier

Manipulate a single settings record for
settings with an instance specifier.

✓ ✓ ✓ ✓ ✓

W
eb

servicesURIs
Index

ofw
eb

servicesresources

W
irelessVehicle

BusAdapter(W
VA)Application

DeveloperGuide
23

Device relative URL
(web services path + element URI) Action

Protected
URI

Request methods Content types

GET PUT POST DELETE HTML XML JSON

/ws/files/volume/path

Where volume is either userfs or a USB
flash drive name.

Manipulate a single settings record for
settings with an instance specifier.

✓ ✓ ✓ ✓

/ws/files/volume/path?type=dir Create a new directory at the named
path.

✓

/ws/files/volume/path/filename Manipulate the named file in the
named path.

✓ ✓ ✓ ✓

/ws/hw Get URI list of categories of
manageable hardware interfaces.

✓ ✓ ✓ ✓

/ws/hw/buttons Get URI list of manageable buttons. ✓ ✓ ✓ ✓

/ws/hw/buttons/button_name Read the state of the named button. ✓ ✓ ✓

/ws/hw/buzzer Manipulate the buzzer, also known as
the audible alarm.

✓ ✓ ✓ ✓

/ws/hw/fw_update Initiate or test status of a firmware
update.

✓ ✓ ✓ ✓

/ws/hw/leds Get URI list of manageable LEDs. ✓ ✓ ✓ ✓

/ws/hw/led_name Manipulate the named LED. ✓ ✓ ✓ ✓

/ws/hw/reboot Reboot the system. ✓

/ws/hw/time Manipulate system time. ✓ ✓ ✓ ✓

/ws/password Set the password for admin username. ✓ ✓ ✓ ✓

/ws/state Get URI list of state categories. ✓ ✓ ✓ ✓

W
eb

servicesURIs
Index

ofw
eb

servicesresources

W
irelessVehicle

BusAdapter(W
VA)Application

DeveloperGuide
24

Device relative URL
(web services path + element URI) Action

Protected
URI

Request methods Content types

GET PUT POST DELETE HTML XML JSON

/ws/state/state_path
(containing subgroups or instances)

Get URI list of subgroups or instances
for the named state path.

✓ ✓ ✓ ✓

/ws/state/state_path
(containing elements)

Get URI list of elements for the named
state path.

✓ ✓ ✓ ✓

/ws/state/state_path/element_name Query the system for a specific
element of the named state group in
the system.

✓ ✓ ✓

/ws/subscriptions Get URI list of web service subscription
records.

/ws/subscriptions/short_name Manipulate a web service subscription
record.

✓ ✓ ✓ ✓

/ws/vehicle Get URI list of vehicle object
categories.

✓ ✓ ✓ ✓

/ws/vehicle/data Get URI list of vehicle data elements. ✓ ✓ ✓ ✓

/ws/vehicle/data/element_name Get a specific vehicle data element. ✓ ✓ ✓

/ws/vehicle/dtc Get URI list of DTC message types for
which the system listens.

✓ ✓ ✓ ✓

/ws/vehicle/dtc/can0_active Get URI list of ECUs on first J1939/CAN
bus for active DTCs.

✓ ✓ ✓ ✓

/ws/vehicle/dtc/can0_active/ecu_
reference

Get latest active DTC from an ECU on
first J1939/CAN bus.

✓ ✓ ✓

/ws/vehicle/dtc/can0_inactive Get URI list of ECUs on first J1939/CAN
bus for inactive DTCs.

✓ ✓ ✓ ✓

/ws/vehicle/dtc/can0_inactive/ecu_
reference

Get latest active DTC from an ECU on
first J1939/CAN bus.

✓ ✓ ✓

W
eb

servicesURIs
Index

ofw
eb

servicesresources

W
irelessVehicle

BusAdapter(W
VA)Application

DeveloperGuide
25

Device relative URL
(web services path + element URI) Action

Protected
URI

Request methods Content types

GET PUT POST DELETE HTML XML JSON

/ws/vehicle/dtc/can1_active Get URI list of ECUs on second
J1939/CAN bus for active DTCs.

✓ ✓ ✓ ✓

/ws/vehicle/dtc/can1_active/ecu_
reference

Get latest active DTC from an ECU on
second J1939/CAN bus.

✓ ✓ ✓

/ws/vehicle/dtc/can1_inactive Get URI list of ECUs on second
J1939/CAN bus for inactive DTCs.

✓ ✓ ✓ ✓

/ws/vehicle/dtc/can1_inactive/ecu_
reference

Get latest inactive DTC from an ECU on
second J1939/CAN bus.

✓ ✓ ✓

/ws/vehicle/ecus Get URI list of detected vehicle ECUs. ✓

/ws/vehicle/ecus/ecu_reference Get URI list of descriptive items for an
ECU.

✓ ✓ ✓ ✓

/ws/vehicle/ecus/ecu_reference/item Get a specific ECU information
element.

✓ ✓ ✓

Web services URIs Device web services root (/)

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 26

Device web services root (/)
The device web services root, /, gets a URI list of web services categories.

URI path
/

Supported request methods

GET
Queries the system for the list of categories of web service operations available. The data record
returned is a list of URIs corresponding to the “children” of / in the web services data tree.

Supported content types

HTML
The result URIs are turned into URLs relative to the device, and returned in an HTML list.

XML

<ws>
<element>vehicle</element>
<element>config</element>
<element>hw</element>

</ws>

JSON
The result URI strings are collected in an array assigned to a ws field. For example:

{ “ws” : [“vehicle”, “config”, “hw”] }

Web services URIs Translated vehicle bus data

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 27

Translated vehicle bus data
Devices with vehicle bus connectivity allow raw message manipulation at the bus level. Remote
entities outside the vehicle bus device may communicate with the device in terms of vehicle data
elements, as the abstraction of vehicle elements hides the underlying bus architecture.
Devices such as the Wireless Vehicle Bus Adapter (WVA) include vehicle bus abstraction software to
translate vehicle bus messages into individual units of information. These units become resources
that can be queried in the web services infrastructure.
This interface allows processing of two different types of information:

n Listing and querying vehicle bus data elements

n Listing and querying ECU information elements

Translated vehicle bus data URIs
n vehicle

n vehicle/data

n vehicle/data/element_name

n vehicle/dtc

n vehicle/dtc/can0_active

n vehicle/dtc/can0_active/ecu_reference

n vehicle/dtc/can0_inactive

n vehicle/dtc/can0_inactive/ecu_reference

n vehicle/dtc/can1_active

n vehicle/dtc/can1_active/ecu_reference

n vehicle/dtc/can1_inactive

n vehicle/dtc/can1_inactive/ecu_reference

n vehicle/ecus

n vehicle/ecus/ecu_reference

n vehicle/ecus/ecu_reference/ecu_info_item

Web services URIs Translated vehicle bus data

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 28

vehicle
The vehicle URI gets a list of vehicle object categories.

URI path

vehicle

Supported request methods

GET
Queries the system for the list of categories of vehicle service information available to web services.
The data record returned is a list of URIs corresponding to the “children” of vehicle in the web
services data tree.

Supported content types

HTML
The result URIs are turned into URLs relative to the device, and returned in an HTML list.

XML
The result URIs are each wrapped in element tags, and returned within a vehicle block. For example:

<vehicle>
<element>vehicle/ecus</element>
<element>vehicle/data</element>

</vehicle>

JSON
The result URI strings are collected in an array assigned to a vehicle field. For example:

{ “vehicle” : [“vehicle/ecus”, "vehicle/data”]

Web services URIs Translated vehicle bus data

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 29

vehicle/data
The vehicle/data URI gets a list of vehicle data elements.

URI path

vehicle/data

Supported request methods

GET
Queries the system for the list of vehicle data elements. The returned data record is a list of URIs
corresponding to the “children” of vehicle/data in the web services data tree.

Supported content types

HTML
The result URIs are turned into URLs relative to the device, and returned in an HTML list.

XML
The result URIs are each wrapped in element tags, and returned in a data block. For example:

<data>
<element>vehicle/data/item1</element>
<element>vehicle/data/item2</element>
:
<element>vehicle/data/itemN</element>

</data>

JSON
The result URI strings are collected in an array assigned to a field corresponding to the named ECU.
For example:

{ “data” : [“vehicle/data/item1”, “vehicle/data/item2”, ...
“vehicle/data/itemN”] }

Web services URIs Translated vehicle bus data

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 30

vehicle/data/element_name
The vehicle/data/element_name URI gets a specific vehicle data element.

URI path

vehicle/data/element_name

Supported request methods

GET
Queries the system for the record associated with the specific vehicle data element. An example of a
queryable element is EngineSpeed.

Supported content types
Returned vehicle data element values may be expressed in a variety of categories, such as decimal or
hexadecimal numbers or strings. The examples below demonstrate several types of returned values.
J1939 SPNs, or parameters, that are described as bit fields or enumerations are represented as ints.
J1939 SPNs that can have floating point values are represented as floats. In general, variables that
are strings of bytes are represented as binary data.

XML
The result is returned in a data content block, including a timestamp and a value (scalar, where
numeric), and wrapped in a block named for the requested element. For example, here is the returned
value for EngineSpeed:

<EngineSpeed>
<timestamp>2012-12-09T05:15:32Z</timestamp>
<value>2350.0</value>

</EngineSpeed>

The variable vehicle/data/ParkingBrake is an int variable, and its values are reported in decimal:

<ParkingBrake>
<value>0</value>
<timestamp>2013-11-07T16:54:12Z</timestamp>

</ParkingBrake>

The variable vehicle/data/IgnitionSwitchStatus is a binary value. Its values are reported in
hexadecimal. In the following example, the returned value is 0x55, which is 85 in decimal:

<IgnitionSwitchStatus>
<value>55</value>
<timestamp>2013-11-07T16:57:33Z</timestamp>

</IgnitionSwitchStatus>

JSON
The result is returned as an object with timestamp and value fields, assigned to a field corresponding
to the requested value. Following are JSON examples of same values shown above.

{ "EngineSpeed" : { "timestamp" : "2012-12-09T05:15:32Z",
"value": "2350.0" } }

Web services URIs Translated vehicle bus data

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 31

{ "ParkingBrake": { "value": 0,
"timestamp": "2013-11-07T16:55:37Z" } }

{ "IgnitionSwitchStatus": {
"value": "55",
"timestamp": "2013-11-07T16:59:39Z" }

Web services URIs Translated vehicle bus data

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 32

vehicle/dtc
The vehicle\dtc URI gets a list of DTC message types for which the system listens.

URI path

vehicle/dtc

Supported request methods

GET
Queries the system for the list of vehicle diagnostic trouble codes. The data record returned is a list of
URIs corresponding to the “children” of vehicle/dtc in the web services data tree. These children
represent classes of diagnostic messages on the various buses of the system.

Supported content types

HTML
The result URIs is turned into URLs relative to the device, and returned in an HTML list.

XML
The result URIs will each be wrapped in element tags, and returned in a dtc block. For example:

<dtc>
<element>vehicle/dtc/can0_active</element>
<element>vehicle/dtc/can0_inactive</element>
<element>vehicle/dtc/can1_active</element>
<element>vehicle/dtc/can1_inactive</element>

</dtc>

JSON
The result URI strings is collected in an array assigned to a dtc field. For example:

{ “dtc” : [“vehicle/dtc/can0_active”,
“vehicle/dtc/can0_inactive”,
“vehicle/dtc/can1_active”,
“vehicle/dtc/can1_inactive”] }

Web services URIs Translated vehicle bus data

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 33

vehicle/dtc/can0_active
The vehicle/dtc/can0_active URI gets a list of ECUs on the first J1939/CAN bus for active DTCs.

URI path

vehicle/dtc/can0_active

Supported request methods

GET
Query the system for the list of ECUs that the system knows exist on the primary J1939/CAN bus,
since they might be providing active DTC messages (J1939 PGN 65226). The data record returned is a
list of URIs corresponding to each ECU on a bus.
Each time the vehicle data subsystem restarts, it exposes a fixed list of ECUs. Once the subsystem
begins running, it samples the bus for 60 seconds to determine whether the list of ECUs it has
recordedmatches the current running vehicle. If it does not match, the subsystem automatically
stores an updated list and restarts the subsystem to use the new, fixed list.

Supported content types

HTML
The result URIs is turned into URLs relative to the device, and returned in an HTML list.

XML
The result URIs will each be wrapped in element tags, and returned within a can0_active block. For
example:

<can0_active>
<element>vehicle/dtc/can0_active/ecu0</element>
<element>vehicle/dtc/can0_active/ecu3</element>

</can0_active>

JSON
The result URI strings is collected in an array assigned to a can0_active field. For example:

{ “can0_active” : [“vehicle/dtc/can0_active/ecu0”,
“vehicle/dtc/can0_active/ecu3”] }

Web services URIs Translated vehicle bus data

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 34

vehicle/dtc/can0_active/ecu_reference
The vehicle/dtc/can0_active/ecu_reference URI gets the latest active DTC from an ECU on the first
J1939/CAN bus.

URI path

vehicle/dtc/can0_active/ecu_reference

Supported request methods

GET
Queries the system for the most recent DTC report from the referenced ECU on the primary
J1939/CAN bus, if any (J1939 PGN 65226).

Note PGN 65226messages are generally broadcast by ECUs once per second, so it is expected that
these messages are updated regularly.
HTML status code 503 (Service Unavailable) indicates that the referenced ECU is expected to be
valid, but no PGN 65226 message has yet been received. HTML status code 404 (Not Found)
generally indicates that the system is not listening for trouble codes on the referenced ECU.

Supported content types

XML
The result, if any, is returned in a data content block, including a timestamp and a value. The value is a
hexadecimal string representing the binary payload of the PGN 65226message. The data block name
matches the ECU reference. For example:

<ecu0>
<timestamp>2012-12-09T05:15:32Z</timestamp>
<value>00ff00000000ffff</value>

</ecu0>

JSON
The result, if any, is returned as an object with timestamp and value fields, with the value as a
hexadecimal string representing the binary payload of the PGN 65226message. The name of the
object matches the ECU reference. For example:

{ “ecu0” : { “timestamp” : “2012-12-09T05:15:32Z”,
“value” : “00ff00000000ffff” } }

Web services URIs Translated vehicle bus data

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 35

vehicle/dtc/can0_inactive
The vehicle/dtc/can0_inactive URI gets a list of ECUs on the first J1939/CAN bus for inactive DTCs.

URI path

vehicle/dtc/can0_inactive

Supported request methods

GET
Queries the system for the list of ECUs that the system knows exist on the primary J1939/CAN bus,
since they might be providing inactive DTC messages (J1939 PGN 65227). The record returned is a list
of URIs corresponding to each ECU on a bus.

Note Each time the vehicle data subsystem restarts, it exposes a fixed list of ECUs. Once the
subsystem begins running, it samples the bus for 60 seconds to determine whether the list of ECUs it
has recordedmatches the current running vehicle. If not, the subsystem automatically stores an
updated list and restarts the subsystem to use the new fixed list.

Supported content types

HTML
The result URIs are turned into URLs relative to the device, and returned in an HTML list.

XML
The result URIs are each wrapped in element tags, and returned in a can0_inactive block. For
example:

<can0_inactive>
<element>vehicle/dtc/can0_inactive/ecu0</element>
<element>vehicle/dtc/can0_inactive/ecu3</element>

</can0_inactive>

JSON
The result URI strings are collected in an array assigned to a can0_inactive field. For example:

{ “can0_inactive” : [“vehicle/dtc/can0_inactive/ecu0”
“vehicle/dtc/can0_inactive/ecu3”] }

Web services URIs Translated vehicle bus data

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 36

vehicle/dtc/can0_inactive/ecu_reference
The vehicle/dtc/can0_inactive/ecu_reference URI gets the latest active DTC from an ECU on the
first J1939/CAN bus.

URI path

vehicle/dtc/can0_inactive/ecu_reference

Supported request methods

GET
Queries the system for the most recent inactive trouble code report from the referenced ECU on the
primary J1939/CAN bus, if any (J1939 PGN 65227).

Note PGN 65227messages are polled no more frequently than once every ten seconds.
HTML status code 503 (Service Unavailable) indicates that the referenced ECU is expected to be
valid, but no PGN 65227 message has yet been received. HTML status code 404 (Not Found)
generally indicates that the system is not listening for trouble codes on the referenced ECU.

Supported content types

XML
The result, if any, is returned in a data content block, including a timestamp and a value. The value is a
hexadecimal string representing the binary payload of the PGN 65227message. The data block name
matches the ECU reference. For example:

<ecu0>
<timestamp>2012-12-09T05:15:32Z</timestamp>
<value>00ff00000000ffff</value>

</ecu0>

JSON
The result, if any, is returned as an object with timestamp and value fields, with the value as a
hexadecimal string representing the binary payload of the PGN 65227message. The name of the
object matches the ECU reference. For example:

{ “ecu0” : { “timestamp” : “2012-12-09T05:15:32Z”,
“value” : “00ff00000000ffff” } }

Web services URIs Translated vehicle bus data

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 37

vehicle/dtc/can1_active
The vehicle/dtc/can1_active URI gets a list of ECUs on the second J1939/CAN bus for active DTCs.

URI path

vehicle/dtc/can1_active

Supported request methods

GET
Query the system for the list of ECUs that the system knows exist on the secondary J1939/CAN bus,
since they might be providing active DTC messages (J1939 PGN 65226). The data record returned is a
list of URIs corresponding to each ECU on a bus.
Each time the vehicle data subsystem restarts, it exposes a fixed list of ECUs. Once the subsystem
begins running, it samples the bus for 60 seconds to determine whether the list of ECUs it has
recordedmatches the current running vehicle. If it does not match, the subsystem automatically
stores an updated list and restarts the subsystem to use the new, fixed list.

Supported content types

HTML
The result URIs is turned into URLs relative to the device, and returned in an HTML list.

XML
The result URIs will each be wrapped in element tags, and returned within a can1_active block. For
example:

<can1_active>
<element>vehicle/dtc/can1_active/ecu0</element>
<element>vehicle/dtc/can1_active/ecu3</element>

</can1_active>

JSON
The result URI strings is collected in an array assigned to a can1_active field. For example:

{ “can1_active” : [“vehicle/dtc/can1_active/ecu0”,
“vehicle/dtc/can1_active/ecu3”] }

Web services URIs Translated vehicle bus data

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 38

vehicle/dtc/can1_active/ecu_reference
The vehicle/dtc/can1_active/ecu_reference URI gets the latest active DTC from an ECU on the
second J1939/CAN bus.

URI path

vehicle/dtc/can1_active/ecu_reference

Supported request methods

GET
Queries the system for the most recent DTC report from the referenced ECU on the secondary
J1939/CAN bus, if any (J1939 PGN 65226).

Note PGN 65226messages are generally broadcast by ECUs once per second, so it is expected that
these messages are updated regularly.
HTML status code 503 (Service Unavailable) indicates that the referenced ECU is expected to be
valid, but no PGN 65226 message has yet been received. HTML status code 404 (Not Found)
generally indicates that the system is not listening for trouble codes on the referenced ECU.

Supported content types

XML
The result, if any, is returned in a data content block, including a timestamp and a value. The value is a
hexadecimal string representing the binary payload of the PGN 65226message. The data block name
matches the ECU reference. For example:

<ecu0>
<timestamp>2012-12-09T05:15:32Z</timestamp>
<value>00ff00000000ffff</value>

</ecu0>

JSON
The result, if any, is returned as an object with timestamp and value fields, with the value as a
hexadecimal string representing the binary payload of the PGN 65226message. The name of the
object matches the ECU reference. For example:

{ “ecu0” : { “timestamp” : “2012-12-09T05:15:32Z”,
“value” : “00ff00000000ffff” } }

Web services URIs Translated vehicle bus data

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 39

vehicle/dtc/can1_inactive
The vehicle/dtc/can1_inactive URI gets a list of ECUs on the second J1939/CAN bus for inactive
DTCs.

URI path

vehicle/dtc/can1_inactive

Supported request methods

GET
Queries the system for the list of ECUs that the system knows exist on the secondary J1939/CAN bus,
since they might be providing inactive DTC messages (J1939 PGN 65227). The record returned is a list
of URIs corresponding to each ECU on a bus.

Note Each time the vehicle data subsystem restarts, it exposes a fixed list of ECUs. Once the
subsystem begins running, it samples the bus for 60 seconds to determine whether the list of ECUs it
has recordedmatches the current running vehicle. If not, the subsystem automatically stores an
updated list and restarts the subsystem to use the new fixed list.

Supported content types

HTML
The result URIs are turned into URLs relative to the device, and returned in an HTML list.

XML
The result URIs are each wrapped in element tags, and returned in a can1_inactive block. For
example:

<can1_inactive>
<element>vehicle/dtc/can1_inactive/ecu0</element>
<element>vehicle/dtc/can1_inactive/ecu3</element>

</can1_inactive>

JSON
The result URI strings are collected in an array assigned to a can0_inactive field. For example:

{ “can1_inactive” : [“vehicle/dtc/can1_inactive/ecu0”
“vehicle/dtc/can1_inactive/ecu3”] }

Web services URIs Translated vehicle bus data

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 40

vehicle/dtc/can1_inactive/ecu_reference
The vehicle/dtc/can1_inactive/ecu_reference URI gets the latest inactive DTC from an ECU on the
second J1939/CAN bus.

URI path

vehicle/dtc/can1_inactive/ecu_reference

Supported request methods

GET
Queries the system for the most recent inactive trouble code report from the referenced ECU on the
secondary J1939/CAN bus, if any (J1939 PGN 65227).

Note PGN 65227messages are polled no more frequently than once every ten seconds.
HTML status code 503 (Service Unavailable) indicates that the referenced ECU is expected to be
valid, but no PGN 65227 message has yet been received. HTML status code 404 (Not Found)
generally indicates that the system is not listening for trouble codes on the referenced ECU.

Supported content types

XML
The result, if any, is returned in a data content block, including a timestamp and a value. The value is a
hexadecimal string representing the binary payload of the PGN 65227message. The data block name
matches the ECU reference. For example:

<ecu0>
<timestamp>2012-12-09T05:15:32Z</timestamp>
<value>00ff00000000ffff</value>

</ecu0>

JSON
The result, if any, is returned as an object with timestamp and value fields, with the value as a
hexadecimal string representing the binary payload of the PGN 65227message. The name of the
object matches the ECU reference. For example:

{ “ecu0” : { “timestamp” : “2012-12-09T05:15:32Z”,
“value” : “00ff00000000ffff” } }

Web services URIs Translated vehicle bus data

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 41

vehicle/ecus
The vehicle/ecus URI gets a list of detected vehicle ECUs.

URI path

vehicle/ecus

Supported request methods

GET
Query the system for the list of addressable ECUs in the vehicle. The data record returned is a list of
URIs corresponding to the “children” of vehicle/ecus in the web services data tree.
Each ECU in the system is referenced by a J1939/CAN bus number, and the ECU address number. A
standard ECU in vehicles, for instance, is at address 0, which is defined as the primary engine. The
reference designation for the engine on CAN bus 1 is can1ecu0. Both the CAN bus number and the
ECU address number in the reference designator are expressed in decimal. ECU address numbers are
generally sparse.

Supported content types

HTML
The result URIs are turned into URLs relative to the device, and returned in an HTML list.

XML
The result URIs are each wrapped in element tags, and returned within an ecus block. For example:

<ecus>
<element>vehicle/ecus/can0ecu0</element>
<element>vehicle/ecus/can0ecu2</element>
<element>vehicle/ecus/can1ecu25</element>

</ecus>

JSON
The result URI strings are collected in an array assigned to an ecus field. For example:

{ “ecus” : [“vehicle/ecus/can0ecu0”,
“vehicle/ecus/can0ecu2”,
“vehicle/ecus/can1ecu5”] }

Web services URIs Translated vehicle bus data

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 42

vehicle/ecus/ecu_reference
The vehicle/ecus/ecu_reference URI gets a list of descriptive items for an ECU.

URI path

vehicle/ecus/ecu_reference

Supported request methods

GET
Queries the system for the list of data elements describing a specific engine control unit (ECU) in the
vehicle. The data record returned is a list of URIs corresponding to the “children” of vehicle/ecus/ecu
reference in the web services data tree. ECU references include a J1939/CAN bus number and ECU
address number as described in vehicle/ecus.
An example element describing an ECU is a serial number. The VIN is another element that should
reside in at least one vehicle ECU.

Supported content types

HTML
The result URIs are turned into URLs relative to the device, and returned in an HTML list.

XML
The result URIs are each wrapped in element tags, and returned within a block with a name
corresponding to the named ECU. For example:

<can0ecu2>
<element>vehicle/ecus/can0ecu2/make</element>
<element>vehicle/ecus/can0ecu2/model</element>
<element>vehicle/ecus/can0ecu2/serial_number</element>
:
<element>vehicle/ecus/can0ecu2/VIN</element>

</can0ecu2>

JSON
The result URI strings are collected in an array assigned to a field corresponding to the named ECU.
For example:

{ “can0ecu2” : [“vehicle/ecus/can0ecu2/make”,
“vehicle/ecus/can0ecu2/model”,
“vehicle/ecus/can0ecu2/serial_number”, ...
“vehicle/ecus/can0ecu2/VIN”] }

Web services URIs Translated vehicle bus data

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 43

vehicle/ecus/ecu_reference/ecu_info_item
The vehicle/ecus/ecu_reference/ecu_info_item URI gets a specific ECU information element.

URI path

vehicle/ecus/ecu_reference/ecu_info_item

Supported request methods

GET
Queries the system for a specific element describing a specific ECU. The set of valid ecu_info_item
values is available in vehicle/ecus/ecu_reference.

Supported content types

XML
The result is returned in an element with a name corresponding with the item being requested. For
example:

<VIN>1HGBH41JXMN109186</VIN>

JSON
The result is assigned to a field corresponding to the requested value. For example:

{ “VIN” : “1HGBH41JXMN109186” }

Web services URIs Asynchronous data delivery registration: subscriptions, alarms, and the Event Channel

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 44

Asynchronous data delivery registration: subscriptions, alarms,
and the Event Channel

Because each data element the web services can address has a unique URI, it is possible to query any
required data on demand. However, since each query incurs an overhead cost, it can be a somewhat
inefficient mechanism if data elements must be polled to detect changes. You can use data alarm and
subscription features to detect these changes.

Subscriptions
A data subscription is a registration with the system, instructing that specified URIs should be
delivered to a remote entity at specified intervals, asynchronously. Any URI except files can be
registered in a subscription.

Alarms
Alarms allow you to inform the device that it should “watch” specified vehicle bus values and prepare
to push asynchronous updates regarding those values if a configured test is true. For example, you
can set an alarm to receive notification that a vehicle's engine speed has exceeded a particular RPM
value.

Event Channel
All notifications of subscribed data or alarms are delivered via an Event Channel. The Event Channel is
the mechanism for delivering asynchronous, out-of-band data, such as alarms and periodic updates
from subscriptions.
The Configuration interfaces can be used to prepare the device to generate out-of-band data. Delivery
of out-of-band data occurs on a dedicated TCP channel only, independent of the normal HTTP traffic.
As a result, browsers without custom extensions are not really the intended targets of these out-of-
band channels. See Event channel for more information.

URIs for managing subscriptions and alarms
The following URI paths manage subscriptions and alarms:
subscriptions
subscriptions/short_name
alarms
alarms/short_name

Web services URIs Asynchronous data delivery registration: subscriptions, alarms, and the Event Channel

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 45

subscriptions
Data subscriptions are managed as a set of records, where each record describes a specific element
to be delivered on a periodic basis. If desired, you can apply multiple subscriptions to a single URI,
though this is of limited value. The subscriptions URI operates like a data store. Initially, the store is
empty. The existence of a record in the data store corresponds with a subscription registered with the
system. You can query, add, change, and remove records at will. The records have names that are
arbitrary to the system, supplied via the request URI.

URI path

subscriptions

Supported request methods

GET
Queries the system for the list of subscription records. The record returned is a list of URIs
corresponding to the “children” of subscriptions in the web services data tree.

Supported content types:

HTML
The result URIs are turned into URLs relative to the device, and returned in an HTML list.

XML
The result URIs are each wrapped in element tags, and returned within a subscriptions block. For
example:

<subscriptions>
<element>subscriptions/short_name_1</element>
<element>subscriptions/short_name_2</element>
:
<element>subscriptions/short_name_N</element>

</subscriptions>

JSON
The result URI strings are collected in an array assigned to a subscriptions field. For example:

{ “subscriptions” : [“subscriptions/short_name_1”,
“subscriptions/short_name_2”, ...
“subscriptions/short_name_N”] }

Web services URIs Asynchronous data delivery registration: subscriptions, alarms, and the Event Channel

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 46

subscriptions/short_name
The subscriptions/short_name URI manipulates a web service subscription record.

URI path

subscriptions/short_name

Subscription configuration records
Subscription configuration records include:

n uri: The URI of the element to be delivered.

n buffer: The buffering policy for the subscription, which can include:
l queue: If the Event Channel is closed, updates are placed in the Event Channel delivery

queue.

l discard: Messages are discarded if the event channel is closed.

n interval: The number of seconds between updates. This must be an integer greater than zero.

Supported request methods

GET
Queries the system for the record associated with the specified short name, which is supplied by the
user when the record is first stored in the device.

PUT
If the requested record does not yet exist, adds a new record with the requested URI to the system. If
the requested record already exists in the system, the existing record is modified to match the
supplied record data.

DELETE
Removes the specified record from the system.

Supported content types

XML
The GET and PUT forms use a subscription record. For example:

<subscription>
<uri>vehicle/data/EngineSpeed</uri>
<buffer>queue</buffer>
<interval>10</interval>

</subscription>

JSON
The GET and PUT forms create an object assigned to a subscription field. In PUT requests, numeric
fields need not be quoted, but GET responses feature all fields and values as quoted strings,
regardless of type. For example:

Web services URIs Asynchronous data delivery registration: subscriptions, alarms, and the Event Channel

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 47

{ “subscription” : { “uri” : “vehicle/data/EngineSpeed”,
“buffer” : “queue”, “interval” : “10” }}

Web services URIs Asynchronous data delivery registration: subscriptions, alarms, and the Event Channel

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 48

alarms
The alarms URI gets a list of web service alarm records.
Data alarms are managed as a set of records, with each record describing a specific alarm condition.
Multiple alarm conditions can be applied to a single URI. For any sample, all alarm conditions are
tested andmatching alarm conditions are pushed into the event channel, relative to buffering controls
and the existence of an event channel.
Not all URIs support alarms. If a URI does not support alarms, an attempt to create an alarm results
in an HTTP error.

Note In the initial WVA release, only vehicle data URIs support alarms. The interface is defined so that
other URIs can be added to alarms without changing the registration methods.

The alarms URI operates like a data store. Initially, the store is empty. The existence of a record in the
store corresponds with an alarm condition registered with the system. The external user can query,
add, change, and remove records at will. The records have names that are arbitrary to the system,
which you supply through the request URI.

URI path

alarms

Supported request methods

GET
Queries the system for the list of alarm records. The returned record is a list of URIs corresponding to
the “children” of alarms in the web services data tree.

Supported content types

HTML
The result URIs are turned into URLs relative to the device, and returned in an HTML list.

XML
The result URIs are each wrapped in element tags, and returned within an alarms block. For example:

<alarms>
<element>alarms/short_name_1</element>
<element>alarms/short_name_2</element>
:
<element>alarms/short_name_N</element>

</alarms>

JSON
The result URI strings are collected in an array assigned to an alarms field. For example:

{ “alarms” : [“alarms/short_name_1”,
“alarms/short_name_2”, ...
“alarms/short_name_N”] }

Web services URIs Asynchronous data delivery registration: subscriptions, alarms, and the Event Channel

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 49

alarms/short_name
The alarms/short_name URI manipulates a web services alarm record.

URI path

alarms/short_name

Alarm configuration records
Alarm configuration records include:

n uri: The URI of the element to test for alarms

Note In the initial release, only vehicle data URIs support alarms. The interface is defined such that
other URIs can be added to alarms without changing the registration methods.

n type: The type of alarm, which can include:
l above: Triggered if a detected value exceeds the threshold.

l below: Triggered if a detected value is below the threshold.

l change: Triggered if the detected value is different from the most recent value recorded.
The expected frequency of updates is limited by the internal implementation associated
with the supported URIs. For example, the frequency of a vehicle data alarm is limited by
the frequency with which the ECUs in the system push the requested items are pushed
into the vehicle bus.

l delta: Triggered if the newest detected value is different from the previous value reported
in an event by more than the configured threshold. When the alarm is added or modified,
the current value becomes the previous value. If no current value is available, the next
change triggers the alarm, regardless of threshold.

n buffer: The buffering policy for the alarm, which can include:
l queue: If the Event Channel is closed, an alarm indication is placed in the Event Channel

delivery queue. See Event Channel buffering policy.

l discard: If the event channel is closed, messages are discarded.

n threshold: For scalar elements, the threshold value to be tested based on the alarm type.

n interval: The minimum number of seconds that must pass before another indication of the
same alarm should be delivered. This value is an integer andmust be greater than or equal to
0.

Supported request methods

GET
Queries the system for the record associated with the specified short name. The short name was
supplied by the user when the record was first stored in the device.

Web services URIs Asynchronous data delivery registration: subscriptions, alarms, and the Event Channel

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 50

PUT
If the requested record does not yet exist, a new record (with the requested URI) is added to the
system. If the requested record already exists in the system, the existing record is modified to match
the supplied record data.

DELETE
Removes the specified record from the system.

Supported content types

XML
The GET and PUT forms use an alarm record. For example:

<alarm>
<uri>vehicle/data/EngineSpeed</uri>
<type>above</type>
<buffer>discard</buffer>
<threshold>8000.0</threshold>
<interval>60</interval>

</alarm>

JSON
The GET and PUT forms create an object assigned to an alarm field. In PUT requests, numeric fields
need not be quoted, but GET responses will feature all fields and values as quoted strings, regardless
of type. For example:

{ “alarm” : { “uri” : “vehicle/data/EngineSpeed”,
“type” : “above”, “buffer” : “discard”,
“threshold” : “8000.0”, “interval” : “60” } }

Web services URIs Asynchronous data delivery registration: subscriptions, alarms, and the Event Channel

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 51

Event channel
Listed below are details on the Event Channel functionality and considerations on using the Event
Channel in application programming.

n Assumptions regarding the Event Channel

n Event Channel service configuration

n Event Channel buffering policy

n Event message records

Assumptions regarding the Event Channel
n The WVA device supports only one Event Channel at a time.

n The remote peer is responsible for creating the Event Channel, as only it knows when it is
capable of handling event messages.

n The connection is made to a configurable service port on the WVA device.

n The Event Channel is used to deliver asynchronous, out-of-band data, such as alarms and
periodic updates from subscriptions to vehicle data endpoints. Set the TCP port number to a
value between 1025 and 65535 that is not already assigned to another service. The TCP port
number is set in the Network Service Configuration page.

n You can add and remove alarm and subscription registrations freely. These registrations inform
the system on which alarm and subscription messages should be generated, and when. The
messages are placed in the Event Channel for consumption by a remote entity. The messages
are not retrieved via web services.

n The Event Channel is assumed to be on a local, high bandwidth connection. Therefore, the size
of the data expression is limited in its importance.

n The Event Channel is not compressed.

n The Event Channel is not encrypted.

n The Event Channel is write-only by the WVA device.

n If the remote peer does not consume the event channel notifications, messages can be
dropped by the device when the TCP send path is full.

n The WVA device does not read from the TCP connection.

n All notifications pushed into the Event Channel use a common, prearranged MIME content type.

Event Channel service configuration
The Event Channel functionality runs in parallel to the bulk of web services. It must be configurable by
the system as part of the standard system configuration mechanism. You can configure the following
parameters affecting Event Channel operation:

n Enable or disable the Event Channel network service in the product.

When enabled, the TCP port number defined for the Event Channel network service listens for
connections. The Event Channel network service is enabled or disabled in the Network Service
Configuration page.

https://www.digi.com/resources/documentation/digidocs/90001929/default.htm#Task/T_config_netservices_descriptions.htm
https://www.digi.com/resources/documentation/digidocs/90001929/default.htm#Task/T_config_netservices_descriptions.htm
https://www.digi.com/resources/documentation/digidocs/90001929/default.htm#Task/T_config_netservices_descriptions.htm

Web services URIs Asynchronous data delivery registration: subscriptions, alarms, and the Event Channel

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 52

n The Event Channel is used to deliver asynchronous, out-of-band data, such as alarms and
periodic updates from subscriptions to vehicle data endpoints. Set the TCP port number to a
value between 1025 and 65535 that is not already assigned to another service. The TCP port
number is set in the Network Service Configuration page.

n The MIME content type used for any notifications is determined by the content type of the
most recent registration. Since most reasonable uses will use one content type or other for all
data manipulation, this establishes the Event Channel format without requiring extra
configuration. See RESTful interface principles in the web services.

Event Channel buffering policy
As alarms, subscriptions, and other web services elements need to push data to a remote entity via
the Event Channel, they are submitted for transmission to the Event Channel manager. Each
submission includes the data to transmit and the buffering policy preferred by that specific message.
This buffering policy is referenced by the channel manager, as it determines whether to immediately
transmit a message or queue the message for transmission.
The buffering behavior for Event Channel messages when there is no Event Channel is configurable via
web services on a per-event basis.

n If there is no Event Channel present, and the policy is to discard, the message is dropped.

n If there is no Event Channel present, and the policy is to queue, the message is added to the
pending message queue (see note, below).

n If there is an Event Channel, and the queue is empty, an attempt to transmit is made. If the
transmit fails (for instance, the connection has recently been closed), the buffering policy is
consulted.

n If there is an Event Channel, but there are messages in the queue, the message is added to the
queue.

Note In the initial implementation of web services, the queue only retains the 64 most recent
submissions of any type.

Event message records
Event message records are written to the Event Channel as simple wrappers around the standard
data delivery form for the item the event was configured for.
The wrapper includes:

n An indication of the type of record, such as an alarm or data from a subscription.

n The user-supplied short name associated with the event record.

n The URI associated with the event value, for convenience.

n A sequence number that increments with each event. This sequence number is unique to the
alarm or subscription andmay be used to detect dropped events.

n A timestamp indicating when the event was generated. This timestamp is in addition to the
vehicle data timestamp, which indicates when the data was obtained.

The following XML and JSON code examples demonstrate how the records might be seen in the Event
Channel.

https://www.digi.com/resources/documentation/digidocs/90001929/default.htm#Task/T_config_netservices_descriptions.htm

Web services URIs Asynchronous data delivery registration: subscriptions, alarms, and the Event Channel

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 53

Example event message record: periodic delivery of engine speed (RPM) as a subscription

XML

<data>
<short_name>RPM_Every_Minute</short_name>
<uri>vehicle/data/EngineSpeed</uri>
<sequence>2</sequence>
<timestamp>2012-12-07T20:17:32Z</timestamp>
<EngineSpeed>

<timestamp>2012-12-07T20:17:32Z</timestamp>
<value>3600.0</value>

</EngineSpeed>
</data>

JSON

{ data : { “short_name” : “RPM_Every_Minute”,
“uri” : “vehicle/data/EngineSpeed”,
“sequence” : 2,
“timestamp” : “2012-12-07T20:17:32Z”,

“EngineSpeed” : { “timestamp” : “2012-12-07T20:17:32Z”,
“value” : “3600.0” } } }

Example event message record: delivery of vehicle speed (RPM) as an alarm
The data delivered with an alarm is the value read that triggered the alarm. It is the responsibility of
the remote consumer to either “remember” what the alarm associated with this short name is for, or
to read the alarm record to determine the alarm configuration.

XML

<alarm>
<short_name>Speed_Limit</short_name>
<uri>vehicle/data/VehicleSpeed</uri>
<sequence>2</sequence>
<timestamp>2012-12-07T20:17:32Z</timestamp>
<VehicleSpeed>

<timestamp>2012-12-07T20:18:33Z</timestamp>
<value>93.5</value>

</VehicleSpeed>>
</alarm>

JSON

{ “alarm” : { “short_name” : “Speed_Limit”,
“uri” : “vehicle/data/VehicleSpeed”,
"sequence" : 2,
"timestamp" : "2012-12-07T20:17:32Z",
“VehicleSpeed” : { “timestamp” : “2012-12-07T20:18:33Z”,

“value” : “93.5” } } }

Web services URIs Hardware interfaces

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 54

Hardware interfaces
You can directly interact with some of the WVA hardware interfaces. The hardware interfaces must be
enumerated, and operations defined.

Hardware interface URIs
hw
hw/buttons
hw/buttons/button_name
hw/leds
hw/leds/led_name
hw/time
hw/buzzer
hw/fw_update
hw/reboot

Web services URIs Hardware interfaces

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 55

hw
The hw URI gets a list of categories of manageable hardware interfaces.

URI path

hw

Supported request methods

GET
Queries the system for the list of categories of hardware interfaces manageable by web services. The
data record returned is a list of URIs corresponding to the “children” of hw in the web services data
tree.

Supported content types

HTML
The result URIs are turned into URLs relative to the device, and returned in an HTML list.

XML
The result URIs are each wrapped in element tags, and returned within an hw block. For example:

<hw>
<element>hw/buttons</element>
<element>hw/leds</element>
<element>hw/time</element>

</hw>

JSON
The result URI strings are collected in an array assigned to a hw field. For example:

{ “hw” : [“hw/buttons”, “hw/leds”, “hw/time”] }

Web services URIs Hardware interfaces

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 56

hw/buttons
The hw/buttons URI gets a list of manageable buttons.

URI path

hw/buttons

Supported request methods

GET
Query the system for the list of addressable buttons manageable by web services. The data record
returned is a list of URIs corresponding to the “children” of hw in the web services data tree.

Supported content types:

HTML
The result URIs are turned into URLs relative to the device, and returned in an HTML list.

XML
The result URIs are wrapped in element tags, and returned in a buttons block. For example:

<buttons>
<element>hw/buttons/button_1</element>
<element>hw/buttons/button_2</element>
:>
<element>hw/buttons/button_N</element>

</buttons>

JSON
The result URI strings are collected in an array assigned to a buttons field. For example:

{ “buttons” : [“hw/buttons/button_1”,
“hw/buttons/button_2”, ...
“hw/buttons/button_N”] }

Web services URIs Hardware interfaces

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 57

hw/buttons/button_name
The hw/buttons/button_name URI reads the state of the named button.

URI path

hw/buttons/button_name

Supported request methods

GET
Queries the state of the named button.

Supported content types

XML
Button records can have one of the following as contents:

<button>down</button>
<button>up</button>

JSON
Button records can have one of the following as contents:

{ “button” : “down” }
{ “button” : “up” }

Web services URIs Hardware interfaces

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 58

hw/leds
The hw/leds URI gets a list of manageable LEDs.

URI path

hw/leds

Supported request methods

GET
Query the system for the list of addressable LEDs manageable by web services. The data record
returned is a list of URIs corresponding to the “children” of hw/leds in the web services data tree.
On the WVA, there is a dimmer feature that is exposed as an LED for control purposes.

Supported content types

HTML
The result URIs are turned into URLs relative to the device, and returned in an HTML list.

XML
The result URIs are wrapped in element tags, and returned within an leds block. For example:

<leds>
<element>hw/leds/led_1</element>
<element>hw/leds/led_2</element>
:
<element>hw/leds/led_N</element>

</leds>

JSON
The result URI strings are collected in an array assigned to a buttons field. For example:

{ “leds” : [“hw/leds/led_1”, “hw/leds/led_2”, ...
“hw/leds/led_N”] }

Web services URIs Hardware interfaces

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 59

hw/leds/led_name
The hw/leds/led_name URI manipulates the named LED.
On the WVA, you can use the special LED name dimmer to manipulate the hardware LED dimmer (off
for bright, on for dim).

URI path

hw/leds/led_name

Supported request methods

GET
Queries the state of the named LED.

PUT
Changes the state of the named LED.

Supported content types

XML
LED records may have one of the following as contents:

<led>on</led>
<led>off</led>

JSON
LED records can have one of the following as contents:

{ “led” : “on” }
{ “led” : “off” }

Web services URIs Hardware interfaces

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 60

hw/time
The hw/time URI gets the system time for the WVA's real time clock in the WVA. Time values must
follow standard XML date and time formatting rules. Times must be expressed in UTC (Coordinated
Universal Time).

URI path

hw/time

Supported request methods

GET
Queries the device system time, in UTC.

PUT
Set the device system time, in UTC.

Supported content types:

XML

<time>2013-01-05T09:10:00Z</time>

JSON

{ “time” : “2013-01-05T09:10:00Z” }

Web services URIs Hardware interfaces

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 61

hw/buzzer
The hw/buzzer URI manipulates the buzzer, also known as the audible alarm.

URI path

hw/buzzer

Supported request methods

GET
Queries the state of the buzzer.

PUT
Change the state of the buzzer.

Supported content types

XML
Buzzer records can have one of the following as contents:

<buzzer>on</buzzer>
<buzzer>off</buzzer>

JSON
Buzzer records may have one of the following as contents:

{ “buzzer” : “on” }
{ “buzzer” : “off” }

Web services URIs Hardware interfaces

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 62

hw/fw_update
The hw/fw_update URI initiates or tests the status of a firmware update. Updating the firmware in
the WVA is a three stage process:

1. The firmware update image must be transferred to the device. This transfer operation can be
performed through Digi Remote Manager, the web user interface, or web services. See
Filesystem interfaces for more information.

2. This web services URI can be used to initiate a firmware update using the uploaded file.

3. This web services URI can be used to determine the status of the firmware update.

URI path

hw/fw_update

Supported request methods

GET
Query the state of the firmware update process (if any). Possible firmware update states include:

n running: Normal running, no update in progress.

n updating: Firmware update is in progress.

n updatefailed: The most recent firmware update failed.

n unknown

PUT
Initiate a firmware update with a target file already in the filesystem.

Supported content types

GET records

XML

<fw_update><status>update_state</status></fw_update>

JSON

{ “fw_update” : { “status” : “update_state” } }

PUT records

XML

<fw_update><filename>file_path</filename></fw_update>

JSON

{“fw_update” : { “filename” : “file_path” } }

Web services URIs Hardware interfaces

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 63

hw/reboot
The hw/reboot URI reboots the WVA system.

URI path

hw/reboot

Supported request methods

PUT
Makes the WVA system perform an orderly reboot. The contents of the payload of the message are
unimportant, and ignored.

Web services URIs State interfaces

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 64

State interfaces
The WVA state interfaces read information about the WVA's internal state. State information is read-
only. A state is organized in groups of related items.
Some state groups contain multiple instances. For example, a product with multiple network
interfaces has one unique instance for network settings per interface.
Some state groups contain nested subgroups, organized in a tree structure.
Each final state group contains a number of information elements. An element contains a single state
information value. Each element is addressed individually with a unique URI.
The request URI for state interfaces contains a state_path. The path is a list of groups, subgroups,
and instances separated by “/”. Subgroups and instances are optional, or may be repeated.
The state interface URIs have this general format:

state/group/subgroup/instance/element

State interface URIs
state
state/state_path (containing subgroups or instances)
state/state_path (containing elements)
state/state_path/element_name

Web services URIs State interfaces

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 65

state
The state URI gets a list of state categories.

URI path

state

Supported request method

GET
Queries the system for a list of URIs corresponding with the state groups in the system.

Supported content types

HTML
The result URIs are turned into URLs relative to the device, and returned in an HTML list.

XML
The result URIs are each wrapped in element tags, and returned within a state block. For example:
<state>

<state>
<element>state/device_info</element>
<element>state/device_stats</element>
<element>state/interface_info</element>

</state>

JSON
The result URI strings are collected in an array assigned to a state field. For example:

{ “state” : [“state/device_info”, “state/device_stats”,
“state/interface_info”] }

Web services URIs State interfaces

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 66

state/state_path (containing subgroups or instances)
The state/state_path URI gets list of subgroups or instances for the named state path. The state_
path could incorporate indexes for state path elements as independent path elements following the
indexed element name. For example, a query for state/interface returns a subtree including available
interfaces. A query for state/interface_info/wlan0 returns data for that specific interface only.

URI path

state/state_path

Supported request method

GET
Queries the system for a list of URIs corresponding with the subgroups or instances of the named
state group in the system.

Supported content types

HTML
The result URIs are turned into URLs relative to the device, and returned in an HTML list.

XML
The result URIs are each wrapped in element tags, and returned in a block corresponding to the name
of the state group. For example:

<interface_info>
<element>state/interface_info/eth0</element>
<element>state/interface_info/wlan0</element>

</interface_info>

JSON
The result URI strings are collected in an array assigned to a field corresponding to the name of the
state group. For example:

{ “interface_info” : [“state/interface_info/eth0”,
“state/interface_info/wlan0”] }

Web services URIs State interfaces

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 67

state/state_path (containing elements)
The state/state_path URI gets a list of elements for the named state path.

URI path

state/state_path

The state_path could incorporate indexes for state path elements as independent path elements
following the indexed element name. For example, a query for state/interface returns a subtree
including available interfaces.

Supported request method

GET
Queries the system for a list of URIs corresponding with the elements of the named state group in the
system.

Supported content types

HTML
The result URIs are turned into URLs relative to the device, and returned in an HTML list.

XML
The result URIs are each wrapped in element tags, and returned in a block corresponding to the
name of the state group. For example:

<interface_info name=”eth0”>
<element>state/interface_info/eth0/mac</element>
<element>state/interface_info/eth0/ip</element>

</interface_info>

JSON
The result URI strings are collected in an array assigned to a field corresponding to the name of the
state group. For example:

{ “interface_info” : [“state/interface_info/eth0/mac”,
“state/interface_info/eth0/ip”] }

Web services URIs State interfaces

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 68

state/state_path/element_name
The state/state_path/element_name URI queries the system for a specific element of the named
state group in the system.

URI path

state/state_path/element_name

Supported request method

GET
Queries the system for a specific element of the named state group in the system.

Supported content types

XML
The result is returned in an element with a name corresponding with the item being requested. For
example:

<mac> 00:40:9d:68:77:aa</mac>

JSON
The result is assigned to a field corresponding to the requested value. For example:

{ “mac” : “00:40:9d:68:77:aa” }

Web services URIs Filesystem interfaces

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 69

Filesystem interfaces
The WVA offers a mechanism to access files and directories for a variety of purposes, but primarily
information storage. Occasional uses might include pushing a firmware update to the WVA, or
examining the system event log.
The WVA has a volume, named userfs that you can use for custom file storage. Files in this volume are
stored in a hierarchical directory structure. There are several system-specific directories and files in
userfs that you cannot manipulate.
In the WVA filesystem, a path refers to a specification for a directory within the volume. Individual files
have a filename in a particular “path.”
Other volume names correspond to storage space on USB devices. An example USB volume name is
sda1.
For consistency with a wide range of existing Digi products, the WVA has two directory paths pre-
existing when the system is created: /userfs/WEB and /userfs/WEB/python. Both paths are writable,
and you can create custom directory trees below these paths.

Note The WVA filesystem interface is used to manipulate specific files in the embedded system at
relatively fixed paths. An external application that uses web services must know the paths to the files,
and know which paths and names are directories versus files. The filesystem interface itself does not
provide hints as to the types of file names found in the directory tree.

Filesystem interface URIs
files/volume/path
files/volume/path?type=dir
files/volume/path/filename

Web services URIs Filesystem interfaces

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 70

files/volume/path
The files/volume/path gets a list of directory contents of the path, or deletes an empty directory.

URI path

files/volume/path

Where:
volume is either userfs or a USB flash drive name.
path refers to a directory in this system, and is constructed from a list of directory names separated
by a /, indicating a specific location within the directory tree. Example directory paths include:

userfs/WEB
userfs/WEB/python

If the path is omitted, the root directory of the volume is manipulated.

Supported request methods

GET
Queries the system for the directory listing associated with the specified path.

DELETE
Removes the specified directory path if it is empty.

Supported content types

HTML
For a GET, the result URIs are turned into URLs relative to the device, and returned in an HTML list,
allowing browising of the directory structure.

XML
The GET form creates a directory listing record, with the top level node the same as the trailing
directory name in the path. The full URI to each entry in the directory is included in the list. An example
GET from /userfs/WEB/python might include:

<file_list>
<file>files/userfs/WEB/python/name1</file>
<file>files/userfs/WEB/python/name2</file>

</file_list>

JSON
The GET form returns a list of URIs corresponding to the contents of the requested directory. The list
is assigned to a field in a new object corresponding to the trailing directory name in the path. An
example GET from /userfs/WEB/python might include:

{ “file_list” : [“files/userfs/WEB/python/name1”,
“files/userfs/WEB/python/name2”] }

Web services URIs Filesystem interfaces

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 71

files/volume/path?type=dir
The files/volume/path?type=dir URI creates a new directory. The named path must not yet exist.
The parent directory of the named path must exist.

URI path

files/volume/path?type=dir

Supported request method

PUT
Create a directory with the specified path.

Web services URIs Filesystem interfaces

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 72

files/volume/path/filename
The files/volume/path/filename URI manipulates the named file in the named path.

URI path

files/volume/path/filename

Supported request methods

GET
Queries the system for the file at the specified path with the supplied filename. The file contents are
returned as the payload of the message response.

PUT
If the named file does not yet exist, adds a new file (with the requested URI) to the system. If the
requested file already exists in the system, changes the existing file. The payload of the PUT command
become the contents of the file.

DELETE
Removes the specified file from the system.

Web services URIs Configuration interfaces

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 73

Configuration interfaces
The WVA has an interface to the configuration settings for the device. In addition, WVA web services
are available for device configuration. Configuration settings are organized in groups of related
settings, which are intended to be manipulated together. Some settings groups have multiple
instances. For example, a product with multiple network interfaces has one unique instance for
network settings for each network interface.

Configuration interface URIs
config
config/settings_group
config/settings_group (with instances)
config/settings_group/instance_specifier
config/factory_default

Web services URIs Configuration interfaces

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 74

config
The config URI gets a list of configuration setting groups.

URI path

config

Supported request methods

GET
Queries the system for a list of URIs corresponding with the settings groups in the system.

Supported content types

HTML
The result URIs are turned into URLs relative to the device, and returned in an HTML list.

XML
The result URIs are each wrapped in element tags, and returned in a config block. For example:

<config>
<element>config/system</element>
<element>config/button</element>
<element>config/led_control</element>

</config>

JSON
The result URI strings are collected in an array assigned to a config field. For example:

{ “config” : [“config/system”, “config/button”,
“config/led_control”] }

Web services URIs Configuration interfaces

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 75

config/settings_group
The config/settings_group URI manipulates a single settings record, for settings without an instance
specifier.

URI path

config/settings_group

Supported request methods

GET
Queries the settings, returning the named settings instance record.

PUT
Changes the settings instance to match the supplied record.

Supported content types

XML
Settings are returned inside tags matching the name of the settings group, with the appropriate
instance specifier inserted if applicable. For example, here is a settings group without an instance
specifier:

<http>
<enable>on</enable>
<port>80</port>

</http>

Here is an example of a settings group with an instance specifier:

<interface name="wlan0">
<static>off</static>
<dhcp>on</dhcp>
<ip>0.0.0.0</ip>
<subnet>0.0.0.0</subnet>
<gateway>0.0.0.0</gateway>

</interface>

JSON
Settings are returned as an object with a field whose name matches the settings group, and whose
value is an object with fields matching the settings record fields. If there is an instance specifier
associated with the record, it is not present in the JSON; it only is present in the request URI.
Here is an example of a settings group without an instance specifier:

{ “http” : { “enable” : “on”, “port” : 80 } }

Here is an example of a settings group with an instance specifier:

{ “interface” : { “static” : “off”, “dhcp” : “on”,
“ip” : “0.0.0.0”, “subnet” : “0.0.0.0”,
“gateway” : “0.0.0.0” } }

Web services URIs Configuration interfaces

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 76

config/settings_group (with instances)
The config/settings_groupURI gets a list of known instance specifiers, for settings that have them.
Each settings group has its own unique elements, and those settings records are not documented
here. They closely match the format available from the device via Digi’s RCI protocol. The method for
pulling the current configuration and pushing configuration changes to individual settings records
follows.

URI path

config/settings_group

Supported request method

GET
Queries the system for a list of URIs corresponding to the instances of the named settings group in
the system.

Supported content types

HTML
The result URIs are turned into URLs relative to the device, and returned in an HTML list.

XML
The result URIs are each wrapped in element tags, and returned within a block corresponding to the
name of the settings group. For example:

<interface>
<element>config/interface/wlan0</element>

</interface>

JSON
The result URI strings are collected in an array assigned to a config field. For example:

{ “interface” : [“config/interface/wlan0”] }

https://www.digi.com/resources/documentation/digidocs/PDFs/90000569.pdf

Web services URIs Configuration interfaces

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 77

config/settings_group/instance_specifier
The config/settings_group/instance_specifier URI manipulates a single settings record, for settings
with an instance specifier.

URI path

config/settings_group/instance_specifier

Supported request methods

GET
Queries the settings, returning the named settings instance record.

PUT
Changes the settings instance to match the supplied record.

Supported content types

XML
Settings are returned inside tags matching the name of the settings group, with the appropriate
instance specifier inserted if applicable. For example, here is a settings group without an instance
specifier:

<http>
<enable>on</enable>
<port>80</port>

</http>

Here is an example of a settings group with an instance specifier:

<interface name="wlan0">
<static>off</static>
<dhcp>on</dhcp>
<ip>0.0.0.0</ip>
<subnet>0.0.0.0</subnet>
<gateway>0.0.0.0</gateway>

</interface>

JSON
Settings are returned as an object with a field whose name matches the settings group, and whose
value is an object with fields matching the settings record fields. If there is an instance specifier
associated with the record, it is not present in the JSON; it only is present in the request URI.
Here is an example of a settings group without an instance specifier:

{ “http” : { “enable” : “on”, “port” : 80 } }

Here is an example of a settings group with an instance specifier:

{ “interface” : { “static” : “off”, “dhcp” : “on”,
“ip” : “0.0.0.0”, “subnet” : “0.0.0.0”,
“gateway” : “0.0.0.0” } }

Web services URIs Configuration interfaces

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 78

config/factory_default
The config/factory_default URI resets configurable settings to their factory defaults.

URI path

config/factory_default

Supported request method

PUT
Causes a reset of the configurable settings to their factory defaults. Any content-related headers (for
example, Accept and Content-Type) are ignored. The payload of the message is unimportant, and is
ignored.

Web services URIs Password interface

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 79

Password interface
A password interface is available to manage the password for protected URIs.

Web services URIs Password interface

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 80

password
The password URI sets the password for admin username.

URI path

password

Supported request methods

PUT
Sets the admin password required to modify protected items.

Supported content types

XML

<password>new_password</password>

JSON

{ “password” : “new_password” }

Web services URIs HTTP response codes

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 81

HTTP response codes
This topic provides the HTTP response codes generated by the web server and the web services code,
along with the contexts in which the response codes may be returned. When using the RESTful
interface, the RESTful web services API calls use HTTP response codes to indicate the status of any
transaction.

200 (“OK”)
This code is the standard code for a successful response. The document payload in a GET request is as
documented. A PUT, POST, or DELETE request has had its effect.

400 (“Bad Request”)
Returned under the following conditions:

n The URI cannot be parsed, particularly if the URI is too long for the internal buffering of the
web services engine.

n The web services are unable to parse a document successfully based on the content type.

n Failure when attempting to set the time.

n Failure parsing the fields of a record in a PUT operation. For example, the URI specified for an
alarm does not reference something that supports alarms.

401 ("Unauthorized")
The request requires authentication. The client should repeat the request with HTTP basic
authentication using the admin login and password.
If the request already included authentication, the login and password are incorrect.

403 (“Forbidden”)
Returned when the specified URI in the request URL is not one that can be managed by the web
services user due to permissions embedded within the system. This failure is most common when
when you are manipulating files in the filesystem. See Filesystem interfaces.

404 (“Not Found”)
Returned under the following conditions:

n The specified URI in the request URL is not one recognized by the web services system.

n For alarms and subscriptions, a GET or DELETE of an as-yet unknown URI is performed. Note
that a PUT can be made to a previously unknown URI to create an alarm or subscription
without generating this error.

405 (“Method Not Allowed”)
Returned when the requested URI is recognized, but the HTTP method (for example, GET or PUT) in
use is not supported in conjunction with that URI. Seee Index of web services resources to determine
which methods are compatible with which URIs.

Web services URIs HTTP response codes

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 82

406 (“Not Acceptable”)
Returned when an HTTP method (for example, GET) requests a response, but the server cannot
deliver a document with that content type for the specified URI. This failure could happen if a request
arrived with an Accept: text/html header, and the URI was XML or JSON only.

414 (“Request-URI Too Long”)
Returned when the requested URI is longer than the web services system is able to parse.

415 (“Unsupported Media Type”)
Returned when an HTTP method (for example, PUT) supplies a document with a content type that is
unexpected for the specified URI. This failure could happen if a document arrived with a Content-
type: text/html header, and the URI was XML or JSON only.

500 (“Internal Server Error”)
Returned when there are unexpected errors unrelated to the requests or responses themselves.
Possible conditions resulting in this code include:

n An unexpected failure registering an alarm.

n An unexpected failure querying the vehicle bus subsystem.

n An inability to read or write the internal resources associated with LEDs.

503 (“Service Unavailable”)
Returned when a data query could not be fully processed due to a transient state in the web server.
Possible conditions resulting in this code include:

n A temporary lack of memory to allocate for parsing requests or generating responses can
generate this response.

n A vehicle bus data request is made to a URI known to potentially be available on the bus, but
the Digi device has not yet received the specified data.

Programming

These topics discuss aspects of developing application programs for the WVA.

WVA file system 84
Demo application and resources for Android developers 84
Real time clock 84
Security features in the WVA 84
Power management 86

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 83

Programming WVA file system

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 84

WVA file system
The WVA has a Linux-based filesystem. This section gives an overview of the key directories of the
filesystem and common operations performed on directories and files.

Important directories
The /WEB/python/ directory is for user-specific files, such as custom applications. Subdirectories can
be created in this area for the customer's applications. This area is read-write.
The /WEB/logging directory contains system log files, including eventlog.txt, python.log, and digi.log.
These files are read-only. For more information on these files, see the description of the system log in
the Troubleshooting section of the Wireless Vehicle Bus Adapter Getting Started Guide.
For more information on the filesystem, see Filesystem interfaces.

Access/browse the filesystem from device interfaces
There are several ways you can interact with the filesystem resident on the WVA:

n Through the web services filesystem interfaces. These resources are used to browse and
create directories andmanipulate files. See Filesystem interfaces.

n Through the web interface for several operations, including firmware updates and
backup/restore operations. See Configure the WVA in the Wireless Vehicle Bus Adapter Getting

Started Guide.

n Through the Digi Remote Manager File Management functions. See Managing Device Files in
the Digi Remote Manager User Guide.

Demo application and resources for Android developers
The source code for a WVA demo application is available on GitHub, and includes a library and source
code repository for details on requirements, setup, and building the application. The WVA Android
library provides an API for accessing the web services and event channel of a WVA.
For information see:

n Wireless Vehicle Bus Adapter Android demo application

n WVA Android Library source code repository README on GitHub

n Wireless Vehicle Bus Adapter Getting Started Guide

n WVA Android Library Tutorial

Real time clock
The WVA has a real time clock. The time for this clock is set by the web services resource hw/time.
In the application code, note that the application must set the real-time clock before any firmware
updates can be performed.

Security features in the WVA
There are several security features in the WVA.

https://www.digi.com/resources/documentation/digidocs/90001929/default.htm#Reference/R_troubleshooting.htm%3FTocPath%3DTroubleshooting|_____0
https://www.digi.com/resources/documentation/digidocs/90001929/default.htm#Task/T_configure_wva.htm%3FTocPath%3DConfigure%2520the%2520WVA|_____0
https://www.digi.com/resources/documentation/digidocs/90001436-13/default.htm#containers/cont_manage_device_files.htm
https://www.digi.com/resources/documentation/digidocs/90001929/default.htm#Task/T_run_demoapp.htm%3FTocPath%3DRun%2520the%2520WVA%25C2%25A0demo%2520application|_____0
http://github.com/digidotcom/wvalib
https://www.digi.com/resources/documentation/digidocs/90001929/default.htm
http://www.digi.com/resources/documentation/digidocs/90001431/default.htm

Programming Security features in the WVA

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 85

n For Wi-Fi security, the WVA uses WPA2 with pre-shared key (PSK).

n For user authentication, the WVA uses HTTP authentication.

Security for the Wi-Fi communications channel
The basic channel for communication between the WVA and a connected device is a Wi-Fi
communication channel.
The security in place over the Wi-Fi communications channel varies depending on the network
connection type:

n When the WVA is the access point: The Wi-Fi channel is secured using WPA2 with a pre-
shared key, also known as WPA-PSK. WPA2 provides encryption over the channel, while the pre-
shared key provides authentication.

n When the connected device is the access point: The connected device selects which kind of
security key is in place. Some devices, such some models of smart phones, do not have
security.

n When in Wi-Fi Direct mode: The Wi-Fi channel is secured using WPA-PSK, with the key being
selected dynamically per the Wi-Fi Direct specification.

Security for activities performed over the Wi-Fi communications
channel
Several activities performed over the Wi-Fi communications channel implement security.

Activity Protocol Security in place

Web server, including web
interface

HTTP/HTTPS By default, the web interface uses
HTTPS (encrypted), with HTTP basic
authentication. The WVA devices
creates a unique certificate for self-
identification. Any display of
warnings about certificates is
handled through the web browser. In
applications, code can handle the
certificate management step.

Web services basic
request/response

HTTP/HTTPS Some web services are protected
with HTTP basic authentication. See
the Index of web services resources.
The Protected URI column identifies
protected resources.

Web Services Event Channel TCP The Event Channel is a read-only
channel using a dedicated TCP port.
The channel is unencrypted.

Programming Power management

Wireless Vehicle Bus Adapter (WVA) Application Developer Guide 86

Activity Protocol Security in place

Digi Remote Manager EDP over SSL over TCP Digi always requires that the channel
for Digi Remote Manager
communications from a Digi device
be secure and encrypted, and that
the server be verified.

Modifying the security model
You can enable a different security model through the password web services resource. This resource
sets the password for the admin username for the WVA.

CAUTION! Changing the admin password can make pairing of the WVA with a
connecting device more difficult. A lost password could result in users not being able to
access the WVA.

Power management
The WVA has a power management scheme built into its device configuration settings, on the
Configuration > Power Management page in the web interface. The default for power management
is that all of Power Management is disabled (off).
For configuration information, see Configure power management settings in the Wireless Vehicle Bus
Adapter Getting Started Guide.
The basic power management settings allow for control over the following:

n Sleep mode: Determines whether the WVA goes into sleepmode when no engine activity
(RPM=0) is detected. The default is disabled (off).

n Wake on movement: Determines whether the WVA wakes from sleepmode upon detection of
vibration, typically a sharp vibration to the vehicle frame. The default is disabled (off).

n Wake on alternator: Determines whether the WVA wakes from sleepmode upon detection of
the vehicle's alternator running on alternator power rather than the vehicle battery. The
default is disabled (off).

n Wake on Button press: Controls whether the WVA wakes from sleepmode by pressing the
button. The default is disabled (off).

n Periodic Wake Settings: Allows for a periodic or timed wake from sleepmode for the device.
The default is that periodic wake is disabled (off). If enabled, the wake timer can range from 1
to 1440minutes (24 hours), and the default is 5minutes.

https://www.digi.com/resources/documentation/digidocs/90001929/default.htm#Task/T_config_powermgmt.htm%3FTocPath%3DConfigure%2520the%2520WVA|Configure%2520power%2520management%2520settings|_____0

	WVA Application Developer Guide
	Programmable aspects of the Wireless Vehicle Bus Adapter
	Web services
	Programming resources

	WVA components and interfaces
	Connector pinout
	Pin locations
	Pin signals
	Additional wiring and connection resources

	Available interfaces on the wiring harness
	Recommended CAN simulator model
	Interfaces: firmware, software, and hardware
	Firmware and software interfaces
	Hardware interfaces

	Memory and development specifications
	Regulatory and safety statements
	RF exposure statement
	FCC Part 15 Class B certifications and regulatory information (USA Only)
	Industry Canada (IC) certifications
	Safety statements

	Certifications
	Automotive certifications
	International EMC (Electromagnetic Emissions/Immunity/Safety) standards
	Environmental certifications
	NEMA certifications/IP rating

	Managing web services
	Data flow using the web services
	Web services terms
	RESTful interface principles in the web services
	Providing access to individual resources
	Granularity based on independence of resources
	Leveraging HTTP operations
	Leveraging HTTP security
	Support for multiple content types
	WVA security and protected URIs

	Access and navigate the web services
	Access web services from a web browser
	Access web services from an application

	Web services URIs
	Index of web services resources
	Device web services root (/)
	URI path
	Supported request methods
	Supported content types

	Translated vehicle bus data
	Translated vehicle bus data URIs
	vehicle
	vehicle/data
	vehicle/data/element_name
	vehicle/dtc
	vehicle/dtc/can0_active
	vehicle/dtc/can0_active/ecu_reference
	vehicle/dtc/can0_inactive
	vehicle/dtc/can0_inactive/ecu_reference
	vehicle/dtc/can1_active
	vehicle/dtc/can1_active/ecu_reference
	vehicle/dtc/can1_inactive
	vehicle/dtc/can1_inactive/ecu_reference
	vehicle/ecus
	vehicle/ecus/ecu_reference
	vehicle/ecus/ecu_reference/ecu_info_item

	Asynchronous data delivery registration: subscriptions, alarms, and the Event...
	Subscriptions
	Alarms
	Event Channel
	URIs for managing subscriptions and alarms
	subscriptions
	subscriptions/short_name
	alarms
	alarms/short_name
	Event channel

	Hardware interfaces
	Hardware interface URIs
	hw
	hw/buttons
	hw/buttons/button_name
	hw/leds
	hw/leds/led_name
	hw/time
	hw/buzzer
	hw/fw_update
	hw/reboot

	State interfaces
	State interface URIs
	state
	state/state_path (containing subgroups or instances)
	state/state_path (containing elements)
	state/state_path/element_name

	Filesystem interfaces
	Filesystem interface URIs
	files/volume/path
	files/volume/path?type=dir
	files/volume/path/filename

	Configuration interfaces
	Configuration interface URIs
	config
	config/settings_group
	config/settings_group (with instances)
	config/settings_group/instance_specifier
	config/factory_default

	Password interface
	password

	HTTP response codes
	200 (“OK”)
	400 (“Bad Request”)
	401 (Unauthorized)
	403 (“Forbidden”)
	404 (“Not Found”)
	405 (“Method Not Allowed”)
	406 (“Not Acceptable”)
	414 (“Request-URI Too Long”)
	415 (“Unsupported Media Type”)
	500 (“Internal Server Error”)
	503 (“Service Unavailable”)

	Programming
	WVA file system
	Important directories
	Access/browse the filesystem from device interfaces

	Demo application and resources for Android developers
	Real time clock
	Security features in the WVA
	Security for the Wi-Fi communications channel
	Security for activities performed over the Wi-Fi communications channel
	Modifying the security model

	Power management

